We started the week with a few words about estate taxes.
Then it was on to the justice system. On Tuesday I offered a little quiz on recognizing reasonable doubt (or its absence) in an exceptionally simple environment. Some readers thought that environment was too simple to be interesting. On the contrary, it’s simplicity is what makes it so interesting. If we can’t recognize reasonable doubt in such a simple environment, how can we ever recognize it in the courtroom?
On Wednesday, we talked about the appropriate numerical cutoff for reasonable doubt, and on Thursday we took a step back and asked what principles we should apply in choosing that cutoff. On Friday, I decried the dereliction of duty by judges and legislators who refuse to tell us what cutoff they have in mind when they use the word “reasonable”.
Some commenters thought that giving jurors a precise numerical standard was asking them to think more “mathematically” (whatever that means) than we can reasonably expect. But there’s no mathematics involved in telling a juror that he should convict if he believes that in 100 similar cases, at least 93 of the defendants will be guilty. No mathematics, that is, beyond the ability to count to 100, which is, I think, something we already expect of our jurors.
If I don’t tell you what “reasonable” means, then “beyond a reasonable doubt” makes as much sense as “beyond a gribzle doubt”. Judges could, if they wanted to, tell juries to convict if the evidence convinces them beyond a gribzle doubt, and then refuse to reveal what “gribzle” means. I don’t see how that system would differ substantially from the one we have now.