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| Higher algebrajc K-theory: I

Daniel Quillen®

-.fhe-purpose. of--thie..paper.is_to.develop.a. higher  K-theory for additive categories
with exact segquences which extends the existing theory of the Grothendieck group in a
natural wﬁy. To describe the approach taken here, let g be an additive category

enbedded as a full subcategory of an abelian csatsgory ﬁ , and assume §' ie closed under
extensione in A . Then one can form & new category Q(g) having the same objectz as M ,
but in which 8 ;orphiam from M' to X is taken {0 be an isomorphimm of M' with a ) .
subquotient Mﬂ/ﬂo of M, where MDCZ'M1 sre subobjects of M such that Mo and M/M1 .
are objects of E « Assuming the isomorphism clapses of objects of ﬁ form a set, the.
category Q(E) has a classifying space BQ(&) deternined up to homotopy egquivalence,

One can show that the fundamental group of this classifying space is canonicelly isomor-
phic to the Grothendisck group of 2 y which motivates defining a sequence of K-groups by

the formula

kM) = =, (Be0),0) .

It is the goal of the present paper to show that this definition lesds to an interesting
theory. '

The first part of the paper is ﬁoncerned with the general theory'of these K-groups.
Section 1 contains various tools for working with the classifying spsce of a small
category. It concludes with an important result which identifies the homotopy-theoreiic
fibre of the map of cléssifying spaces induced by a functor. In KX-theory this is used
to obtain long exact sequences of K-groups from the exact homotopy sequenmce of m map.

Section 2 is devoted to the‘definition of the K—groups.and their elementary proper=-
ties. One notes that the category Q(g) dépends only on M -and the family of those
short sequences QO —M' a2 N = M" =0 in M which &re exact in the embient abeliamn
category. In order to have an intrinsic object .of study, it is convenient to introduce
the notion of an gxact category, whieh is en additive category equipped with a family of
_shoTt sequences satisfying some standard conditions (essentially those axiometized in
[Eeller]). For an exact caiegory E with a set of iscmorphism classes one has a Béquence
of X-groups Ki(g) varying functorially with respect to exact functors. Section 2 - also
contains the prool that Ko(g) is isomorphic to the Grothendleck group of M. It should
be mentioned, however, that thers are exemples dve to Gersten and Muxrthy showing that in
general K1(§) is not the same as the upiversal determinant grouv of Bass, ' ‘ ‘

The next.three sections contain four basic resulis which might be called tpe
exactness, resolution, devissage, and localization theorems. Each of these generalizes
a well-known result for the Grothendieck group ([Bass, Ch. VIII}), and, as will be

. apparent from the fest of the paper, they enable one to do a lot of X-theory.

The second part of the paper is coricerned with applicetions of the general Fheory to’

rings and schemes. Given a ring (resp. a noetherian ring) A , one defines the groups
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Kl(A)' (resp. K{(A) ) to be the K-groups of the category of finitely generated projec-
tive A-modules (resp. the abelian category of finitely generated A-modules). There ia a
cangnical map Ki(A) Y Ki(A) which is an isomorphism for A regular by the resolution
theorem. Becsuse the devissage and localization theorems apply only %o abelian categories,
the interesting results concern the groups Ki(A) . In section 6 we prove the formulas

' 1 ' -1 ' ' ‘
k(a) = kjQale]) , kAfee]D) = ks @k (4) £

for A noetherian, which entail the corresponding results for K-groups when A is
regular. The first formula is proved more generally for a class of rings with increasing
filtration, including some interssting non-commutative rings such as universasl enveloping
algebras. To illustrate the generality, the X-groups of certain skew fields ars computed.

For a scheme (resp. noetherian) scheme X, the groups Ki(XJ (resp. Ki(x) ) are
defined using the category of vector bundles (resp. coherent sheaves) on X, and there is
2 canonicel map Ki(x) — K{(X) which is an iscmorphism for X rTegular. Section 7 is
devoted to the K'-theory. Cspecially interesting is a spectral sequence

B | [ ox ) — ) B

cod(x) =p i
obtained by filtering the category of ccherent sheaves according to the codimension of the
support. In the case where X is regular and of finite type over a field, we carry out a

program proposed by Ge:stan‘ at this conference ([Geraten 3]), which leads to a proof of
Bloch's formula &
AP = EP(X, Kp(o

0.))
proved by Bloch in particular cases ([Bloch]), where AP(X} is the group of codimension
p cycles modulo linear equivalence. One noteworthy feature of this formula is that the

right side is clearly contravariant in X, which suggeste rather strongly that higher
K-theory might eventually provide a theory of the Chow ring for non-quasi-projective
regular varieties, ' '

Section B contains the computation of the K-groups of the projective bundle
associated to & vector bundle over a scheme. This result generalizes the computation of
the Grothendieck groups given in [SGA BJ, and it may be viewed as a first step toward &
higher K-theory for‘achemes. ags opposed to the K'-theory of the preceding section. Thﬂ?
proof, different from the one in [SGA 6], is based on the existence of canonical .
resolutions for regular sheaves on projective space, which may be of some independent
interest. The method also permits onme to determine the K-groups of a Severi—Brauer"
scheme in terms of the K-groups of the associated Azumays algebra and its powers.

Theorem 1 of that paper, which asserts that the groups Ki(A) here agree with thoa? i
obtained by makding BGL(A) into an H-space (see [Gersten 5]). From a logical point_f%ﬁ
view, this theorem should have preceded the second part of the present paper, since it if
used there a few times. However, I recently discovered that the ideas involved itBuP?°dﬁ
could be applied to prove the expected generalization of the localization thearem and



fundamentel theorem for nop-regular rings [ﬁass, p.494,663]. These results will appear
4n the next insteliment of this theory,

The proofs of Theoreme A and B given in section 1 owe & great deal to conversations
_with Graame Segal, to whom I am very grateful. Ome can derive these results in at 1eaat

by means of the theory of minimal fibrations of simplicial sets. " The present appreach,
pased on the Dold-Thom theory of quesi-fibratione, is gquite a bit shorter than the others,
although it is not as clear as I would have liked, since the msin points are in the
references, OSomeday these idems will undoubtedily be incorporated into a general homotopy

theory for topoi.

This paper was prepared éith the editor's encouragement during the first two mohths
of 1973. I mention this because the results in [7 on Gersten's conjecture and Bloch's
formila, which were diescovered st this time, directly affect the papers [Gerstan 3, 4]
and [Bloch] in this procedings, which were prepared earlier,

two other ways, uaiﬂg cohm°l°ﬂ and the Whitehead theorem as in [Fried] Eﬂde::] and 3180 T T
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Ble The ciasaifying space of a mmall category

In the succeeding sections of thie paper K-groups will be defined as the homotopy

groups of the classifying space of & certmwin smull category: In this—rether-long-section
we collect together the various facis sbout the classifying space functor we will need.
Al11 of these are fulrly well-known, except for the important Theorem B vhich identifies
the homotopy-fibre of the map of classifying spaces induged by & functor under suitable
conditions, It will later be used to derive long exact sequences in K-theory from the

homotopy exact sequence of & map,

Let ¢ be a small category. Its perve, denoted NC , is the (semi-)simplicial set
whose p-simplices are the diagrams in C of the form
Xo—#x1 —_— e =X
The i-th face (resp. degeneracy) of this simplex is obtained by deleting the object X N
{resp. replacing Ly by dd X e xi) in the evident way. The classifying space of C,
denoted K, is the geometric reslization of NC. It is e CW -complex whose p-cells are

in one-one correspondence with the p-simplices of the nerve which are nondegenerate, i.e.
such thet none of the arrowe is an identity map. (5ee [Sega.l 1],[Hilnor 1].)

Fo_r example, let J be s (pgrtially) ordered set regarded ms & category in the ususl .
way. Then BJ is the simplicial complex (with the weak topology) whose vertices are the
elements of J &and whose simplices are thé totally ordered nop-empty finite subsete of J.
Conversely, if K iz a simplicié.l complex and if J is the ordered set of simplices of
K, then the simplicial complex BJ is the baryceniric subdivision of K, Thus every
simplicial complex (with the weak topology) is homeomorphic o the classifying space of
some, and in fact many, ordered sets. Furihermore, since it is known‘that' any CW complex
is homotopy equivalent it e simplicial complex, it follows that a.nf,r interesting homotopy
type is realized as theé classifying space of an ordered set. (I am grateful to Graeme '
Segal for bringing these remarks to my attention.)

As another example, let a group ¢ be regarded as a cafegory with one object in the
usual way. Then BG ie a classifying space for the discrete group G din the traditional
sense., It is an Eilenberg-Maclane space of typel K(G,1), so few homotopy types occur in
this way. : ‘
let X Dbe an object of C. Using X to denote also the corresponding O-cell of
E;, wo have a family of homotopy groups 'zi(Bg,X). 1>0, which will be called the homoiopy
groups of C with basepoint X and denoted simply ™ (C ,X). 0Of course, (C ,X) is mot
a group, but & pointed set, which can be described as the set AN C of components of the
category C pointed by the compopent conteining X, Im eﬁ‘ect. con.nec'ted components of
EC are in one-one correspondence with components of C. ‘

We will see below that w,(CX) and also the homology groups of I can be ‘defined
"aigebraically" without the use of spaces or aome closely related machine auch a5 pemi-
gimplicial homotopy theory, or simplicial complexes and subdivision. The existence of
similar descriptions of the higher homotopy groups seems to be unlikely, because so far
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nobody has produced an "algebtraic" definition of the homotopy groups of & simplicial

complex.

Coverings of Hi and the funda.mental-_Eoup.
Let E be a covering space of B;. For eny object X of 2. let E{X) denote the

fibre of E over X consid'ered' as a O-cell of K. If u:X—-+X'" isemapin C, it

determinas a path from X to X' in BC, and hence gives rise to a bijection E(u): B(X)
= E(X'). It is easy to see that E(fg) = E(f)E(s); hence in this way we obtain a functor
X+ E(X) from C to Sets which is morphism-inverting, that is, it cerries arrows into

T S

isomorphisms.

Conversely, given F : S_""' Seta, let F\Q__ denote the category of pairs (X.,'x)
with X dn C and x€& F(X), in which a morphism (X,x} ==~ (X',x'} is amap u : X—pX'
such that FMu)x = x*'. The forgetful functor F\g -» C induces & map of classifying
spaces B(F\ C) ~»EC having the fibre F(X) over X for each object X. Using
[Gubriel—Zisma.n. App.I, 3.2] it is not difficult to see that when F ia morphism-—inver—
ting, the map B(F\C)-—rm is locally trivial, and hence B F\C) is a covering space

of BC. It is clear that the two procedurss just described are inverse to each other,

Sa RS

whence we have an eguivalence of c'a.tegorias

(Coverings of Bg) 22 (Morph.-inv, F : ¢ — Sets)

where the latter denotes the full subcategory of Funct(C, Seta), the category of functors

i
‘
;
i

freom C to Sets, consisting of the morphim-inverting functors. 7
Let ¢ = ¢ [(A:g )-1] denote the groupoid obtained from € by formally adjoining
the inverses of &ll the arrows [Gabriel-Zisman, I, 1.1] . The canonical functor from g
to G induces an equivalence of categories .
Funct(g, Sets) = (Morph.-inv., F @ C — Seta)
(loc.gdt., I, 1.2). Let X be an object of C and let G, be the group of its auto-

X
morphisms as an object of G. When C is comnected, the inclusion functor Gy —» G is

an equivalence of categories, hence onme has an equivalence

Funct(G, Sets) 2 Funct(Gx, Sets} = (Gx—sets)l.r
Therefore by combining the above aguivalences, we obtain an equivalence of categories of
the category of coverings of B with the category of Gx-uets given by the functer
E t» E(X). By the theory of covering spaces this implies that there is a canonical iso- -
merphism: 1(E,JC) GX. The same conclusion holds when g i8 not connected, as both
groups depend only on the component of € containing X. Thus we have established 1.:h0‘

following.
Propcaition 1. The category of covering ng spacez of EC is canonicelly equlvalent ‘-‘ﬂ

the category of morphism-inverting functors F : C — Sets, or what amounts to the ssme
thing, the category Funct(G, Sets), where G = c[(m 1_] is the groupoid obtaized !
formally inverting the arrows of C. The fundamental group =, (C.,X) is canopically’
isomorphic to the group of automorphisms of X as an object of the groupocid G. o

It followa in particular that a local cosfficient system L of abelisn groups o8,
may be identified with the morphism-joverting functor X =» L(X) from C to abelian gI%

.1




The homol of Bi
It is well-known that the homology and cohomology of the classifying spece of a dis-

crete_group coincide with the homology and cohomology of the group in the sense of homo-

legical algebra. Ve now describe the generalizetion of thie fact for an srbitrary small
category. -

let i be & functor from C to Ab, the category of sbelimn groups, and let
E_(C,4) denote the homology of the simplicial abelian group

T e (c,a) = L1 ax)

P Io-o-. '—‘JT
of chaing on Rg vith coefficients in A. (By the homology we mean the homology of the
; associsted normalized chein complex.) Then there are cancnical iscmorphisms

. B,(C,4) = lig %u)

wheTe l_:l.g: denotes the left derived functors of the right exact fumctor ip  from
Funct(C,Ab) to Ab. This is proved by showing that A > B,(E,A) ig an exact D=Functor
vhich coincides with 1._15_ in degree zero and ie effaceable in positive degrees. {See
[Gebriel-zisman, App.1I, 3.3] .)

let E/(BC,L) denote the singular homology of BC with coefficients in a local
cosfficient system L. Then there are canonical isomorphisms

B (2,1 = EC,1) . |

where we identify L with a worphism-inverting functor as sbove. This may be proved by
filtering the CW complex Bg by means of its skeleta and considering the associmted
spectral sequence. One haa "B 0 for g# 0 &and Elo
plex associsted to C,(E,L). (Compare LSegaJ. 1, 5.‘1].) The spectral secuence degenerates
yielding the deaf:i_.red iscporphism.

.Thus we have e
(1) B(%,1) = lm (L)

= the normalized chain com-

and gimilarly we have & canonicsl isomorphism for cohomology
P = 14mP
(2) - B(eg,1) = ume(L)

where 1:LmE denctes the right derived functors of the left exact functor lim from
-— . b

[ mmct(g,u) to Ab,

ProBgrties of the claaéifz&gﬁ' space functor.

"" From now on we use the letters 2, g ', etc, to denote small categories. If
f:C-~»C"' isa functor, it induces a cellulsr map Bf : BC —+BC'. In this way we
obtain s faithful functor from the category .of small categories to the category of CW
conplexes and cellular maps. This functor is of course not fully faithful. As a particu-—
larly interesiing exemple, we note that there is an obvious canonical celliular homeo-
morphism . ‘

(3) B o= x° _
‘where (=}° is the dual category, which is not realized by s functor from C to go

‘except in very special cases, e.g. groups,
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o

- valence of classifying apaces, and that a category is contractible if its claasifying

‘indexed by I.
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By the compatibility of geometric reslization wlth products [M:Llnor 1] y One lmows q
that the cancnical map , g
(4) B(C x C') —= B x X! . 3

is a homeomorphism if either B¢ or BC' is a finite complex, and also if the
product is given the compactly Eenera.ted. topology. As pointed out in [Sega.l 1], this
implies the following. ‘
. Proposition 2, A natural transformation € ¢ f =3 g of functora from C to C

induces a homoicpy BC_! Tl —~ Bg' between Bf and Bg.

In effect, the tripls (f,2,8) can be viewed a8 a functor g x1 — g'. whers 1
is the ordered set {0<1}, and B1 is the unit interval.

We will say that a functor ia a homotopy equivalenca if it induces a homotopy equi-

space is.
Corollary 1. If a functor f has either a left or a right adjoint, then f is a

homotopy equivalence. .
For if ' i3 say lef{ mdjoint to £, then there are natural transformations

f'f = id, 4d — ff', whence Bf' 1s a homotopy inverse for Bf.
Corollary 2. A category having either an initial or a final object is contractible,
For then the functor from the category to the punctual category has an adjoint.

PR Tratein

Let I Dbe a mmall category which is filtering (= non-empty + directsd E.‘Ba.aa, p.4-1])
and let 4 p» 31 be a functor from I to =mall categories. Let € be the inductive _
limit of the C=! i; because filtered inductive limits commute with finite projective limita,
we have OoC = lim OoC,, ArC = lim Arl , and more geperally NC = 1im NC. . let X, £

= ——te =1 = — =i = — =1 i
O't:agt=i be a family of objects such that for every arrow i —»i' 4{n I, the induced

functor ¢, -~ C,, carries X, to X,, , whence we have an inductive system “n(gi'xi)

Proposition 3. If X is the common image of the Xi in C_!, then
| s m(g%) = e, | :
Proof. Because I is filtering and Ng = J_._i_g_ Ng L it follows that any simplicial
subset of KC with a finite mumber of nondegenerate simplices 1ifts to KC C; for some
i, and moreover the lifting iz unique up to enlarging the index i in the evideni aem
As every compact subset of a CW complex is contained in a finite subcomplex, we sen)thﬁ
every compact subset of B¢ 1ifts to Bgi for some 4, uniquely up to enlarging 1.
propesition feollows easily from this. _
Corollary 1. Suppose in a.dditicn that for every arrov i — i' in 1
is a homotopy equivalence. Then the functor Ei —C is » hamotb. _

functor c —-»Ci,

equivalence for sach 1.

Proof. Replacing I by the cofinal ecategory 1i\I of objects under i, we-can‘

map of CW complexes Bg_i —~ X induces isomorphisms on homotopy. Hence it is &’
bhomotopy equivalence by a well-known theorem of Whitehead.



u

Corollary 2. Any filtering category is contractible,
In effect, I is the inductive limit of the functor i1 j» I/i , and the category
I/4 of objects over i hms & final object, hence is contractible.

_Sﬁ‘ficiént conditions for & functor to be 5 homotopy squivalence-

Let f :C —»C' be a functor and denote objects of E w X, X;. etc, and objects of
E,' by Y, ¥', ete. If Y 3im a fixed object of g'. let I\ { depote the category con-
giBting of pairs (X,v) with v : Y == fX, in vhich a worphism from (X,'v) to (X',v')
isamap w: X —X' puch that f{w)v = v'. In particular, when f is the identity
functor of C', we obtain the category Y\C' of objects under Y. Similarly ome defines
the category £/Y consisting of pairs (X,u) with u : fX =Y, .

Theorsm-A. If the category Y\f 4is contractible for every object I of C', then
the functor { is & homptopy equivalence.

In view of (3), this result admite a dual formulation to the effect that f is a
homotopy equivalence when all of the categories i‘/‘i gre contraciible.

Example. let g : K =» K' be s simplicisl map of simplicial complexss, and let
f:J—J' be the induced map of ordered sets of simplices in K and X', 8o that g
is homeomorphic to Bf, If & denotes the element of J' corresponding to a simpler o
of K', then f£/T is the ordered set of simplices in 3—1(0'). ‘In this situation the
theorem szyse that a simplicizl map is & homotopy equivalence when the inverse image of
each (closed) simplex is contractible.

Befors proving the theorem we derive a coxollary. First-we recell the definition of
fibred and cofibred categories [SGA 1, Exp. VI] in a suitable form. let f '(Y) denote
the fibre of f over Y, that is, the subcategory of g whose arrows are those mapped to
the identity of Y by f: It is easily seen thet f makes C a prefibrad c&tegcgr over
C* in the sense of Joc.cit. if and only if for every object Y of C' the functor

) —— T\T , X (%, 1) |
hae & Tight adjoint. Denoting the adjoint gy (X,v) b= v*X, we obtain for any map
v:Ye=Y ufunctor '
o vt f"(!") —— f'1(Y)
determined up to canonical isomorphism, called base-change by v, The prefibred category
C over C' is a fibred category if for every pair u,v of composable arrows in C's the
canonical morphism of functors urvE - (w.)* is an isomorphism, We will eall such
functors f prefibred and fibred respectively. _ '

Dually, f makes C into a precofibred category over (' when the functors
f"'“(!) — /Y have lef: adjoints (X,v) F>-v,X. In this case the functor v,: f-1(Y) —
f-1 (¥') induced by v.: Y = Y' is called cobase-change by v, and € ie a cofibred
category when (vu), S»v,u, for all composable u,v. Such functors f will be celled

precofibred and cofibred respectively.
Corollary. Suppose that f i either prefibred or precofibred, and that f-‘(Y) is

contractible for every Y. Then f is s homotopy equivalence,
This follows from Prop. 2, Cor. 1. .
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which a morphism from uw : X =Y to u': X' =+ Y' isapair v : X' =X, vw: T -1

86

Example. Let S(E) be the category whose objects are the arrows of C , and in

such that u' = wuv. (Thus S(g) is the cofibred category over ong with discrete
fibres defined by the functor (X,Y} }» Hom(X,Y).} Ome has functors

00 2 3(g) -t

>Z
given by source and target, and it is easy to see that these functors are cofibred. The
categories g (X) = X\C and 4 () = (Ci/!)o have initial objects, hence are contrac-
tidle. Therefore s and t are homotopy equivalences by the coreollary. This construc-
tion provides the simplest way of realizing by meana 61‘ functors the homotopy equivalence
(3). | |

We now turn to the proof of Thecrem A. We will need a standard fact about the
realization of biaimplicial spaces which we now derive,

Let Ord be the category of ordered sets p ={0<1< ..<‘p} pEE 30 that by
definition simplicial objects are functors with domain Ord » The realization functor

(prex) b |2 b x|

from simplicisl spaces to spaces ([Sega.l 1]) may be defined a&s the functor left ad;joint.
to the functor which associstes to a space Y the simplicial apace p HH_OE;(AP, 1)
where Hom denotes function space and Ap is the simplex having p as its set of
vertices. In particular the realization functor commites with inductive limita.

Let T:p,q P> qu be a bisimplicial space, i.e. a functor from E_tj."zgg."
to spaces. Realizing with respect to gq keeping p fixzed, we obtain a simplicial space
Pl lq P> qul which may then be realized with respect to p . Also, we may realize
first in the p-direction and than in the g-direction, or we may realirze the diagonal
eimplicial space ph+T. . It is well-imown (e.g. [Tornehava]) that these three
procedures yield the same result:

Llemma. Thers are homecmorphisms ]

I!HTPPI R qu“ = IqF-h]pH-TPqH
which are functorial in the s:i.mplicial space T.

Proof. Suppose first that T is of the form
1™ z23: (p,q) == Zon(p,r) x Hon(g,s) x S

whera 3 i3 a given space. Then ‘
Ipl-—rHou(p.r) z Hom{p,m) x S] = A"xA’zs.
(This is the basic homeomorphism used to prove thet geometric reelization commutes ld.th
products [M:.lnor 1] Or the other hand, we have
P Lt Hm(p.r)xHM(q--)zsn _ o
=,pl—+Hm(p;r)zA':S' = ATxA*zxs
and similerly for the double realization taken in the other order. Thus the required
functorial haneomdrph:l.m exist on the full subcategory of bisimpliciasl spaces of ‘this
form,




But amy T hss a canonica] presentation

n¥ '8y L = th'r — 7

, (r,s)=>(x',n') (z,m)

' "—Eﬁh_imt—m—‘the-‘-soﬁu‘thut—the“right—arrw—:La—the—onkernei—ofé—the—pad;rmf—mows.
Since the three functors from bisimplicisl spaces to spaces under coneideration commute
with inductive limits , the lemms fellows,

Proof of Theorem A. Let S(f) be the category whose objects are triples (X,Y,v)
vith X an object of C and v : Y -3 fX amspin C', and in which a morphism from
(X,Y,v} to (X*,Y',v') is a pasr of arrows u : X => X', w : I' =»Y such thet
v' e flu)vw. (Thus S(f) 18 the cofibredcategory over C x £'® defined by the functnr

(x,Y) p> Hom(Y,fX),) Ve have functors

Pa Py
£'0 gt S(f) —————p

(L]

given by p,(X,Y,v) = 1, pz(x Y,v) =Y.
Let T(f) be the bisimplicisl set such that an element of T{f) is a pair of
- diagrans |
('Ip —>een > Y —+ X, X '—p ...'—--r-xq)

in C' and C respsctively, and such that the j-th face in the p-(resp, g-)direction
deletes the object Yi {resp X,) in the obvious way. Forgetting the first component gives
s map of bisimpliciml sets '
(+) o) —> N
where the latter is comstant in the p-directiocn. GSince the diagonsl simplicial set of
T{f) is the nerve of the category - S(f), it is clear thet the realization of (*) is the
map 3p, BS(f) —= BC . (By the reslization of a bisimplicial set we mean the space
described in the above lemma, where the bisimplicial set is regarded as a bisimplicial
space in the obviocus way.) On the other hand,'rualizing (*) with respect to p gilves

5/

a map of simplicisl spaces

1l BE'/1X ) ——— _U. pt = N,

S S X =
g 4

which is & homotopy eguivalence for each q because the category C‘/fx hes s finsl
object, Applying & basic result of Mey and Tornmehave [Tornehave, A. 3] , Or the lemma
below (Th. B), we see the realization of (*) is & humot0p§ equivalence. Thus the
.fun;tor Py is a homotopy eguivalence.

Similarly there is a map of bisimplicial sets T f) . H(g'°)p whose realization
is the map sz s BS(f) —3BC'0 . Realizing with reapect to q, we obtain s map of
simplicinl spaces

(»+) _U_ B(Y\f) — Al o - N(g'®),

Y =Y Y-t—..«-Y
o P b3

———

which is a bomotopy eguivalence for eack p, because the categories Y\\f are contrac-
tible by hypothesis. Thue we conclude that the functor P, iz & homotopy equivalence,




from E' +to the homotopy-fibre.product of h and g is & homotopy equivalence.
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But we have a commutative diagram of categories

) P
2'0 (._....E_ S(f) __-_1-5 g i:§
i
i [f- Jf | o
Pz p1 . !

giﬂ‘_—.—-S(idc') ______’,El _2!

wvhere £'(X,Y¥,v) = (£X,¥,v). The horizontal arrows are homotopy equivalences by what has
been proved, (note that Y\ 1d.c, = Y\E ' 4is contractible as it has an initial object).
= . !

The exact homotogz sequence.

Let g : E~»B be amap of topological spaces and let b be a poinf of B, The

i

Trms f is a bomotopy equivslence, whence the theorem. j,'

bhomotopy-fibre of £ over b is the apace : %{
I
Fgb) = Exp x,{t} |
consisting of pairs (e,p) with e a point of E apnd p a path joining g(e) and b,
For any & in 5-1(‘5) one has the exact hbmotopj: séguence of g with basepoint e g
(B,b) — =, (F(g,b), 8) — =, (E,a) —Er =, (B,b) —.. i

ﬂi+1

where & = {e,b), D denoting the constant path at b. _

Let f :C ~>C' bea functor and Y an object of '. If § : YNf —C is the
functor sending (X,v : Y =» fX) %o X, then (X,v)}>v : ¥~ £X 4is a natural trans- ¥l
formation from the constant functor with value Y to fj. Hence by Prop. 2 the compeosite ?
B(Y\f) = BC -» BC' contracts cadonically to the consiant map with image Y, and =0 we

obtain a canonical map
B(Y\f) —a P(Bf, Y).

We want to know when this map is a hpmotopy equivalence, for then we have an exact
sequence relating the homotopy groups of the categcriés Y\f, 9: and C'. OSince the
bomotopy~fibres of a map over points connected by a path are hmotépy e;uivalent, it is
clearly necessary in order for the above map to be a homotopy equivalence for all Y, that
the functor Y'\ f = T\f , (X,7) j>(X,vu) induced by u : Y —Y' be a homotopy
equivalence for every map u in C'. We are going to show the converse is true. ;
Because homotopy~fibres are not classifying spacea of categories, and hance are _sm&-h; i
what removed from what we ultimately will work with, it is convenient to formulate things
in terma of homotapy-carte_aia.n squarea, Recall that a commutative square of spaces

s'l lg
B! _..-}l-——p B

is called homotopy-cartesian if the map

B! —n B! IB BI xg E , e"}——y- (g'(g'), m, ht(av))




when B' is cornfractible, the map Flg',b') =» E' is a homotopy eguivalence for amy b'
ip B', hence one has a map E' - F(g,h(b’ )) unique up to homotopy. In this case the
square is easily seen to be homotopy—cartesian if and only if E'=» F(g,h(b‘)) is a

howotopy equivalence.

4 commutative square of categories will be called homotopy-tartesian if the corres-
‘ ponding square of classifying spaces ie. With this terminology we have the following
generaligation of Theorem A. ‘
Theorem B. Let f : C — C' be a functor such that for every srrow Y — Y' in

', the induced functor ‘Y'\f —s Y\I is & homotopy squivalence. Then for amy object

v

¢
=
Y of C' the cartesian square of categories

N\e —— ¢ 5x,v) = X
£ | £ £1(xv) = (£%,v)
Y\g! __J_‘__‘ gl j'{I',v) =Y

is homotopy-cartesian. Consequently for any X in £7(Y) we have an exact seguence

— T, ,(C .r)——-yu(r\f,x)-—-——a-n(cx)_—-,»n(c 1) = ..

1+1'=
where X= (x,id.y.
As with Theorem A, this result admits a dual formulation with the categories £/,
Coroilagy. Suppose f : ¢ — C' is prefibred {resp. precofibred) and that for every
arrov u : ¥ — v' the base-change functor u*: f-1(Y') —— f-1(Y), {resp., the cobase-

change functor wu,: f-1(Y) —-»»fni(Y')) is & homotopy equivalence. Then for any Y in

C', the cetegory f'1(Y) is homotopy ecuivalent to the homotopy-fibre of f over Y.

(Precisely, the squars

)~

L, &

pt —--»-)C'

where i is the inclusion functor, is homotopy-cartesisn.) Consequently for amy X in

(Y) we have an exact homotopy seguence

-

—m, (60 ) — = (7D 8 R () D= (1) —

i
This is clear, since f-1(Y ~+ Y\ 1is a homotopy equivalence for prefibred f.
'For the proof of the theorem we will need a lemmﬁ based on the theory of quasi-~fibre-
tions [Pold—LaahofJ , which is & special case of a general result about the realization
of & map of simplicial spaces [Segal 2 J. A quagi-fibration js amap g ¢: E —=B of
spaces such that the canonical map g-i(b)-—ﬁ F(g,b) induces isomorphisms on homotopy
forall b in B. When E, B are in the class g of spaces having the homotopy type of
a CW complez, one knows from [Milnor 2] that F(g,b) Jsdn Y. Thus if £ (b) is
alec in ¥, end g is a quasi—fibration,we have that g (b) - F(g,b) is a homotopy

equivalence, i.e. the aquare

sitep iR
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pt

_is homgtopy-certesian,

Lemna. let 1t X be 8 functor from a amall cate_go::y I to to;:olggica.l spaces,

and let g XI -3 BI be the space over BI obtained by realizing the simplicial space
P > l I X .

i —..=1i "o
0 P

pes Xi - Xi, is a homotopy equivalence for every arrow i — 4' in I, then g is s

guasi-fibration.

Proof. It suffices by Lemma 1.5 of LDold.-—La.shof] to show thatthe restriction of g
to the p-skeleton FP of BI is & quasi-fibratiom for all p. We have a map:of

cocartesian squares

oy = o 11z, < IAP C_U_xixAP .

o ]
| [T S -
r - F EE ) <= &)
where the dlsjoint unions are taken over the nondegenerated p-simplices i’o -—, = ip of
NI. Let U be the open set of Pp obtained by removing the barycenters of the p-cells,
and let V = Fp - Fp_.l + It suffices by Lemma 1.4 of loc. cif. to show the restrictions
of g %o U,V and UnV are quasi-fibrations, This is clear for.V and UAY, since
over each p-cell g 4is a product map. ‘
We will apply Lemma 1..3 of loc. git. to g|U, assuming as we may by induction that
g]F 1 is a quasi~fibration, a.nd using the evident fibre-preserving deformation D of
glU into glF‘P___1 provided by the radial deformation of AP minus barycenter onto P Ap.
¥We have only %o check that if D carries xEU into x' er 1 then the map g-1(x) - |
1(: ') induced by D induces isomorphisms of homotopy groups. Supposing x¢ F 1 as
we may, let x come from an interior point z of the copy of AP correspending to the
simplexr s = (i -b..—-a-i ), and let the radial deformation push z into the open face of

AP with vert:.ces \ < ..(J . Then it is easy to see that g 1(:r.) =X, and g—i(x') ":
iy T

Xk s £ = id , and that the map in question is the one Ii -;-xk induced by the face
-] o :

i o k of s. As these induced maps are homotopy equivalences by }&pothesis, the proﬁ_!_fww
of the lemma ia complete.

Proof of Theorem B. We return to the proof of Thaor.em' A, The fumctor p, * 5(1‘)-—?*
ia a homotopy equivalence aa befors, but not necessarily the functor Pye The map - ‘.
Bp, ¢ BS(f)} = B(C'®) is the realization of the map (**), Thus applying the preced
lemma to the functor Y |= B(Y\ £f) from c '® %o spaces, we see that. sz is s qua'si-‘
fibration, and hence the cartesian square B




y@.j—'ém -

e

now—the—diagram
Y \f ey 5(f) =22 ©

ARG 11" (2) lr-
T\ Q' ——Bid, ) == O
IO R

o
pt "—-.i:—’-g'

in which the squares are cartesimn, and in which the sign '~ ' denotes a homotopy
equivalence. Since the squere (1) + (3) 4im homotopy-cartesien, it follows that (1) is
hnmotopy-éa.rtasian, hence (1) + (2) ie alsc, whence the theorenm.

B2. The K_—Erouga of an exaci cnbeﬁog

Eract categories: Let M be an additive category which is embedded as a full sub-
category of an asbelian caisgory A, ané suppose that M is closed under extensions in A
in the sense that if mn object A of A has & subobject A' such that A' and A/4
are isomorpbic to objects of M, then A is isomorphic to an object of M. Let E be
the clase of sequences ) ' i .

(1 0 R VLI SN P BT v O

in g which are exact in the abelian catégory é. We call & map in ¥ an admissible
monomorpbism (resp. admiseible epimorphism) if it occurs as the map i (resp. j) of some

member (1) of E. Admissible monomorphisms end epimorphisms will sometimes be dencted
M jum B DG M ey M", respectively.

The class E clearly enjoys the following properties:

&) Any sequence in g isomorphic to s segquence in E is in ;E_._ For any K',\M" in
¥, the Beguence

(14,0) _ PTo

(2) 0 > N' Me K"

- MM >~ O

is in E, For any aeqﬁenca (1) 4n E, i is a kernel for j and J iz & cokernel for
i in the additlve category M.
b) The class of admissible epimorphisms is closed under compesition and under base--

" change by arbitrary maps in 'M Dunlly, the class of admisaible monomorphisma is closed

under composition and under cobasa—chmge by arbitraly mps in lti

c) Let M ~»M" bea map possessing & kermel in . If there exists amap N - N
in Li such that N —p M == N" is an adreigeible apinc;i'phism. then M — M" is an
admissible epimorphim.' Dually for admissible monomorphiams. '

For ezample, suppose given & sequence (1) in E and amap £ : N -»¥" din K,
Foru the diagram in 4

29

1

AR e s

TR e R S

T



0 b M' o M Sy " ey O

i e

O mmere Wi! » P - N - 0 5

i i Lk

whers P 3is g fibre product of f and j in &,_., Because M i1s closed under exten-
sions in A, we cen suppose P iz an object of E Hence the basechange of j by f

-ﬂ{’._ Ao

)
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o

exists in ¥ anditis an admissible epimorphism. i
Definition. 4An exact category is an additive category & aquipped with a family E ﬁé
of seguences of the form (1), called the(short) exact seguences of M, such that ths é

properties &), b), ¢) bhold. An exast functor P ! l;‘[—,u lg' between exact categories is
an additive functer carrying exact seguences in ﬂ into exact sequences in ﬁ'. _
Examples. Any abelian category is an exact category in an evident way. Any additive
category can be nade into an exact category in at least one wey by taking E to be the
family of split exact sequencea (2). A category which is 'abelian' in the sense of
(Heller] is an exact category which is Karoubian (i.e. every projector has an image), and

——

et

conversely. &

Now sﬁppoae given an axact category M. Let é be the additive category of additive ;
contravariant functors from M to abelian groups which are left exact, i.e. carry (1) to
an exact sequence

0 —F(¥") —> F(M) —— F(N') ,

(Pracisely, choose a universe containing !;1, and let 4 Dbe the category of left exact
functors whose values are abelian groups in the universe,) Following well-imom ldeas
(e.g. [Gabrial] ), cne can prove A is an abelian category, that the Yoneda functor h
embads 5 as a full subcategory of & closed under axf.enions, and finelly that a
sequence (1) is in E 4f and only if h carries it into an exact sequence in A. The
details will be omitted, as they are not really impo:ta.nt for the aéquel.

The cateﬁoﬂ QLI .

It 5 is an exact category, we form a new category QL‘! having the same objects as
X but with morphisma defined in the following way. Let M and M' 'be objects in M

and consider all diagrams
(3)  p— ¥ >

i — !

being unique when they exist. A morphism from M to M' in the category QM is by
definition an isomorphism clasa of these diagrame, Given a morphism from M' to M*
represented by the diagram '

M e N 3y g
the composition of this morphism with the morphism from M to ' represented by (3).
is the morphism repreasented by the pair .j-p::'1 ' :L'-pr2 in the diagram




L7

R I
NxM,N‘: -y N' >

pr‘.i , id '

it + N

X >—-——-i—-—b H!
it
X

It is clear thet composition is well-defined and associative. Thus when the isomorphism

clesses of diagrams (3) form & set (e.g. if every object of M has a set of subobjects)

then QLi is a well~defined category. ¥e assume this to be the case from now on.
It ia useful to describe the preceding construction using admiseible sub~ and

. gquotient objects. 3By an pdmissible subobject of ¥ we will mean an isomorphiem class of

admissible monomorphismes M'j=epe M, isomorﬁhiam ‘being understood as isomorphism of objects
over M. Admiseidle subobjects are in one-cne correspondence with admissible guotient
objecte defined in the a.nalogoﬁs way. The smdmigsible subobjects of M form an ordered smet
with the ordering: M,I( M2 if the unigque map M1 b ME over M is an admissible mono-
morphism. When }115 HZ' we call (H1 ,Hz) an admisa'ible layer of M, =end we call the

‘cokernel l*‘iz‘/!'l1 an admissible subquotiemt of M.

With this terminology, it is cleer that a morphism from M to H' in QM " pay be
identified with a peir ((M, )
il@orphiam 8 M~ M2/M1 » Composition is the obvious way of combining ar isomorphism
of M with an admissible subquotiient of M' and an isomorphism of M' with an admis-

, 8) consisting of an admissible layer in M' &nd an

sible subquotient of - M" 40 get an isomorphism of M with an admissible subquotient of
M.

For example, thé morphisms from O 10 ¥ in Ql_il' are in one-one correspondence with
the admissible subobjects of M. Isomorphisms from M to M' in Qﬂ are the same as
isomorphiams from M to N' in l;l. ‘

If 1 : K > M is an admissible monomorphism, then it gives rise to a morphism
from M' to M in QM which will be denoted

i, t MU' e M,

Such morphisms will be called injective. Similarly, an admissible epimorphism Jj. : H-—»M'

gives rise to a morphism
'

J° B - M
snd these morphisms will be called surjective. By definition, any morphism u in QM
1. A ———— ==
can be factored wu = :L,.]", and this factorization is unique up ioc unique isomorphism.

If we form the bicartesian aquare
(4) JL la" A —-
it _

N .
then u = J''i', , and this injective-followed-by-surjective factorization is also unique
up to unlgue isomorphi=mm., A map which is both injective and surjective is an isomorphism,
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and it 18 of the form B8 = (6™*)! for a unique isomorphism & in M. 3
i Injective and surjective maps in QN should not be confused with monowmorphisms and k
i epimorphisms in the categorical sense, Indeed, every morphism in QN i3 a monomorphiam.
In fact, the category Qg /M is easily seen to be equivalsnt to the ordered set of ad-
"™ missible layers in M with the ordering: ‘(no,n1) é'(Mé,M{) i MISH SM K.
We can use the operations i iy and J > J° to characterize the category QM
by a universal property. First we note that thege operations l'_mve the following

4
’ v

i properties:

:‘ a) If i and 4i' are composable admissible moncmorphiams, then (i'i)! =44, .
Dually, if j and j' are comnposable admissible epimorphisma than

(j;*)! = j'!jt. Mso (id}l)' id.m)t =id, .

, ) If (4) is a bicartesian square in which the horizomtal |resp. vertical)maps
jj are admissible monmorphiaps (resp. epimorphisma), then :L,j! = ;j'!i', .

3} Now suppose given a category 9__ and for sach object .H of M an object hM of

C,and for each 1 : M')>—M (resp, j : N —»HK")amap i, ; hM' — I

b (resp. j ' : hM® —~ hM) such that the propesrties a), b} hold. Then it is clear that £
i ‘ %
] this data induces a upnique functor Q¥ —C , M > hM compatible with the operations %

iqh t

ipsi, and jr+> j in the two categories. '

' In particuler, an exact functor F M -r M' betwean axact categories induces a

¢ functor QN — Q', M PM, 4, H(Fi), . J, [ (FJ) . We note also that if N° is é‘
the dual exact category, then we have an isomorphism of categories i

(5) o) = an g

such that the injective arrows in the former correspond to surjective arrows in the latter

[y

and converaely.

The fundamental group of QM. Suppose now that is a smell exact category, =0
that the clasaifying space B(Qﬂ} is defined. Let O ©be a given zero object of Ig .
Theorem 1. The fundamental group rr1(B(Q§). 0) 4is canocmically isomorphic to the

PR

Grothendleck group X M .
Proof, The Grothendieck group is by definition the abel:.a.n group with one generator

T, [HJ for each object M of M and one relation [M] [M J[M"] for each exact sequenca
5 (1} in M . Ve note that it could also be defined as the not-necessarily-abelian group
"with the same generstors and relations, because the relationa )_H'_][H"] = [M' G M=
LM"][H] force the group to be abelian,
Aecording to Prop. 1, the category of covering spacéa of B(Qﬂ) is equivalent to thﬂ
category E of morphimm-inverting functors P : QM «» Sets. It suffices therefore to
show the group Kog acts naturally on F(0) for F in E + and that the resulting fune= i
tor from F to K M - s8sts is an equivalence of categories. '
Let 4y 0)——!- M and 3y ¥ M —3»0 denote the obvious maps, and let E' be the
full subcategory of F consisting of F such that (i) = 7{0) and r{iw) = 1dF(0)
for all M. Clearly any F is isomorphic to an object of F', so it suffices to shov




F' i= equivalent to Kol.':l - pets.
Given a Kol__! ~ set, 5, let FS i QM —> Sets be the functor defined by

]
P (M) =5, Fgl1,) = idg y Fg(3') = matiplication by [ker j] on s,

uging the universal property of Q¥ . Clearly 5 h+-Fs is & functor from Kog - Bets to
F'. On the other hand if Féz'. then given i : M'y~» M we have i-iM. = 1?] , hence
r(1|) = idF(O)' Given the exact sequence

QU TP BN
we have ;jsim = i!jn!, , hence P(3') = F(ju!.) € aut(F(0)). Also
Fay ) = P(3'5) = P30 0%(4)

80 by the universal property of Koﬂ y there ie & unique group‘hamomorphium {rom KOE to
Aut(F{0)) such that [MJ Fa-P(j;), Thus we have a natursl action of L F{0) for
sny F dn F'. In fact, it is clear that the resulting functor F |} F(0) from F' to
KOE - sets is an ieomorphism of categories vith inverse S Fa-Fs » 80 the proof of the
theorem is. complete.

Eiﬁhﬁi K'EEEEB-' The wbove theorem offers some motivation for the following
definition of K-groups for a mmall exact category g .

Definition. K. = n-m(n(qg),o) .

Note first of ell that the ‘K«groups are independent of the cholce of the zero object
0. Indeed, given ancther zero object O', there is & unigque map 0 — 0' in Qﬁ » hence
there is a canonicel path from O to 0' in the clessifying space.

Secondly we note that the precediqg,dafinitibn extends to exact categories having a
set of isomorphism clmsses of objecfs. We define K.M to be 'Kiﬁ', where E' iz a small

i=
subcetegory equivalent to ﬂ » the choice of K' being irrelevant by Prop. 2. From now on

we will only consider eract categories whose isomorphism classes form & set, except when
mentiooed otherwise. In addition, when we apply the results of g1, it will be taditly

aggumed thet we have repleced any large exact category by an eguivalent small one.

Elementary properties of_'KéErouE » An exact functor f : § - ﬁ' induces a functor

Q¥ —>-QM', and hence & homomorphism of K-groups which will be denoted
*

(6) £, KR —> KN .
In this way Ki becopes & functor from exact categories and exact functors to abelian
groups., MNoreover, isomorphic functors induce the same map on X-groups by Prop. 2. From
(5) we have o
m | K (K°) = KN,

The product ﬂ x g‘ of twec exact categories is an exact category in which & seguence

is exact when its projections in M and M' are, Clearly QK x 2') = QMzx Qi'. Since
thq clasaifying space functor is compatible with producte (51. (4)), we have

(8) KMxh) = EHOKN' , xi pr(x) + prolx) .

!
7
A
!
%
éi
;
!




v

il

ot man a2
__;-,,‘__u,!:.e' 4

T

et

a0 A e
T P R

o

The functor @ gz ﬂ -}Li , (M,M') M & M' 41s sxact, 30 it induces a homomorphism
]
KEe KN = Ki(E T H) ety KK .

This map coincides with the sum in the abelian group Kiﬁ because the functors HN =~
OC@HN, M+ H® O are isomorphic to the identity. '

Let j=» l_‘lj be a functor from a amall filtering category to exact categories and
functors, and let }_i;m;ﬁj be the inductive iimi% of the I;Ij in tl;e sense of Prop. 3.
Then lim M, is an exact category in g natural wa?r, and Q(Hgd) = }g ng ’

— =j
hence froem Prop. 3 we obiain an iscmorphism

(9) - KumE) = Lm KK,
Example. Let A be a ring with 1 and let E(A)' denote the additive category of

finitely generated projective (left) A-modules. We regard g(k) as an exact category in

which the exact sequences are those sequences which are exact in the category of la.ll

A~modules, and we define the X-groups of the ring A by

S s

Ty

KA = 1{1(1==(A)).

A ring homomorphism A=-— A' induces an é:_c_act functor 4! @A'-" : P(A) = P(A') which is

defined up to cenonical isomorphism, hence it induces a well-defined homomorphism

Sy

am b

. R i :
(10) ('@, 7), : K4 —> KA" 7
making KiA a covariant functor of A, From (8) we have '_f}s

' i
1 K o= K A"
(11) (AxA) = KA @ KA ,_

- ¥
If j b A,j is a filtered inductive system of rings, we have from {(9) an isomorphism .,ja

{(12) - Ki(]_._igaj) a J-iui-KiAj .

(To apply (9}, one replaces g(.&‘j) by the equivalent category E(A )" whose objects are’
the idempotent matrices over AJ. , 80 that g(l;‘ig Aj)"-: lim E(AJ)‘. ) Finally we note
that P s HomA(P.A) i3 an equivalence of g(A) with the dual) category to E(Aop), where
A°? 4s the opposed ring to A, hence from (7) we get a canonical iscmorphism 3

(13) k) = k%),

Remarks. It can be proved ithat the groups I{iA daefined here agree with those
defined by making BGL(A) into an H-space and teking homotopy groups (see for example
[_Geraten 5] }. In particular, they coincide for i =1 , 2 with the groups defined by :
by Bass and Milnor, and with the K-groups computed for a finite field in [Quillen 2}-
On the other hand, for a general exact category M, the graup K1 (l;_l) is not the same a3
the universal determingnt group defined in [Bass. p.389]. There is a canonical homomo
phism from the universal determinant group to K1 (M), but Gersten and Murthy have

produced examples showing that it is neither surjective nor injective in general.



§3. Characteristic ‘exact sequences and filtrations

Let-_ E be an exact category and regard the family E of short exact sequences in .3
as an additive category in the obvious way. We denote objects of E by E, E', etc, and

let sE, tE, gf denotes the sub-, tofai,‘a.nd quotient objects of E, whence we have an

exact seguence

0 ——p 8 —3 tE ———— qE —— O

in ¥ associated to each object E of E « A sequence in E will be cé.l].ad exact if it
gives rise to three exact sequences in £ on applying s, %, and g, With thie notion of
exactness, it is clear that E is an exact category, and that B, t, 2nd q are exsct

functors from E to K.

Theorem 2, The functor (s,q; @ QE—> QM x Q¥ is & homotopy equivalence,

Proof. It sufficee by Theorem 4 to show the category (e,q)/(M,N) is contractible
for any given pair M, N of objects of E . Put E = (8,q)/(M,N); it is the fibred
category over QE consisting of triples (E,u,v), where u : 8E ~> M, v : qE =» N are
maps in Q{_ﬁ_ o Let (_'.‘__ ' be the full subcategory of E consisting of the triples (E,u,v)
such that w is Burjective, and let 2" be the full subcategory of triples such thet u

is surjective and v is injective.

Lempa. The inclusion functors C'—>C snd C"—aC' have left adjoints.

Consider Tirst the inclusion of g' in E Let X = (BE,u,v)E C; it suffices %o show
that there is & universal arrow X =+ X in C with X in C'. ) '

Let u= j!i,' where 1 : SE e B, 3 :—H —» N', and define the exact sequence i/E
by 'pushovl.:.t': . '

E: 0 -+ BE + tE » gE » O
J ] I
i,E : 0 ——p N' eop T b qgE ——+ 0 .

Let X = (i*E,j!,v); it belongs to C' and there is a canonical arrow X — X given by
the evident injective map E — i E h

Kow suppose given X — X' with X' = (E',j'!,v‘) in C=2'. Represent the map E—-E'
by the pair E = Eo' E' aupp Eo . Since

BE ymmp SE_ e sE'ecd— ¥

represents u, We CEn suppose Eo chosen go that =E )»—p sEo is the map 1, and
M—»sEa is J. By the universel property of pushouts, the map E )} Eo factors
uniquely E = i E b= Eo y 80 it is clear that wve have a map X =3 X' in 9__' such that
Y= X=X is the given mep X -4 X', ‘

It remains to shov the uniqueness of the.map ¥ — X'. Consider factorizations
X = X" =+ X' of X -~ X' such that X* dis in C'. Note that ¢ = QE/E' is equi-
valent to the ordered set of admissible layers in E'. Let (E0 ,El') be the layer
corresponding to X = X' and (Eg ,E;‘I) the layer corresponding to X" ~—+ X' =0 that
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'y }E4 (E" E") and sEY = sE'. There is a least such layer (Eg . E'{) given by
tE; = tEo ' tE1 = gBE' + t:E1 y which is charscterized by the fact that the map E1/Eo —
Efl'/Eg is injective mnd induces an isomorphism on guotiesnt objects. Thus among the
factorizations X —» X" —» X' __theres is a least one, unique up to canonical iscomorphism,
and characterized by the condition that E —4 E" should be injective and induce an isc-
morphism gE = gB". Since the factorization X — ¥ = X' has this property, it is
clear that the map X -+ X' is uniquely determined. Thus (' ~+ C has the left adjoint
X

Next consider the inclusion of ¢" in C', and let (E,u,v)EC'. Represent
vi:igE— N by the pair J : N' —» gE, 1 : N'%» N , and define -j*E by pull~-back:

0 ——bp 88 ——t T et X' e O

I ! !

0 ==t ZE wmmy tE —— QE = D,

One verifies by an argument esasentially dual to the preceding one that (B,u,v) =
(j*E u.i ) is lef%t adjoint to the ineclusion of C" in C'. This fipishes the lemma.
By Prop. 2, Cor, 1, the categories C and C" are ;omotopy equivalent. Let
(2,4 ,i e c", and let Jy ¢ K0 and iy : OHN be the obvious maps. A map from
(o O dy 'J'N’) to (n.,.] 9 ) may be identified with an admissible subobgect E* of B 4
such that sE' = sBE a.nd qE' = 0. Clearly E' is unique, so (o ,JM ':'N') is an initiel f
object of C". Thus C", and hence { is contractible, which finishes the proof of the ;f%
i
H

theorem.

Corollary 1. t M d M be exact categories and let

0 a—e—y F! » F > + 0

be an sxact sequence of exact functors from M' fo M. Then

Py= Fl o+ P i KN 3 KK,

+

Proof. It clearly suffices to treat the case of the exact seguence
0 + 8 > & * q — O
of functors from E to M, Let f : Mx M — E be the exact functor sending (M, M)
to the aplit exact sequence
O e M remed M) D HY e " e
The functors tf and @& (s,q)f are isomorphic, hence

I, = @-I-(Bl"q*)rlr = (5* + q,.,)f* : (Ki§)2_’_ K‘ig .

But f, 4ie a section of (s,,q,) : KE —> (Kiﬁ)z which is an isomorphimm by the theoresm
Thue ¢, = a, + q,, proving the corollaIy.

Note that the category of functors from a category C fo an exact category N is
an exact category in which a sequence of functors is exact if it is pointwise exact. We
thus have the notion of an admissible filtration O = F,C F1C ..an = F of a functor M

F. This means that Fp-‘l (X)—> ?p(xJ is an admissible monomorpnism in M for every X




4in C, and it implies that there exist quofient functors F p/Fq for gq¢p, determined up
E ]
to canonjcal isoworphism. It im easily seen that if C is an exact cetegory, and if the

fupctors If‘;/lf‘l’_1 &7e exact for 1¢ psn, then all the quotients Pp/Fq are exact,

Corollary 2. (Additivity for ‘characteristic’ filtrations) let F: E' -’-E be an
exact functor between exact cetegoriee eguipped with an edmissible filtration O = Foc:. .

crn = F such that the guotient functors Fp/Fp-‘l ere exact for 1¢pgn. Than

n .
=’ ‘ .
F, E (PP/FP_1)* P KM = KM
Corollary 3. ({Additivity for 'characteristic’ exact sequences) If

0—-—}?9——-—» ...'-——}Fn--—-y-o

is an exact sequence of exact functors from E' to M, then
= ="' —
-1 )P = H ' .
é‘o( 1) (Fp),r 9 BN — KM
These result from Cor. 1 by induction.

Aaelications. Ve give' two simple examples to illustrate the preceding resulta.

Let X be a ringed space, and put XX = Kig(x), where P(X) 1is the category of
vector bundles on X, (i.e. sheaves of %—modulea which are locally direct factors of gxn)
equipped with the usual notion of exsct sequence, Given E in P(X), we have an exact
functor E®°7 : P(X) - P(X) which induces & homomorphim of K-groups (E@7),: K X -
xix. If QO—»E!' = E =3 E" =3 0 is an exact sequence of vector bundles, then
Cor. | implies (E®?), .= (E'®?), + (E"®7), . Thus we obtain products

(1) EXQEX —> KX, [Hex (E@?),Q

which clearly make KX into a module over KX . (Products KX &K jx — xi+jx can

also be defined, tut this requires more machinary,)

Graded rings. Let 4 = 4, GJL ¢ .+ be a graded ring and demcte by ggr(A) the
category of graded finitely generated projective A-modules P = @ P . n&Z. The
group K ngr(A)) is a Z[t t- ]—modu.le vhere multiplication by t is the sutomorphism
induced 'by the trenslation functor P s P(-1), P(- ),n

Proposition, There is a Z [.t,t"U -nodule isomorphism

z{t,+7®, K4 >k, (per(a)) . 18x > (48, 7, x .
O

Proof. Given P im Pgr(A), let F,P be the A-submodule of P generated by P
for Sk, and let Pq be the full subcategory of ggr(A) conaisting of those P :t‘or

which F—q—‘l =0 and FqP = P, VWe have an exact functor
T : pgr(a) —» per(a ) , (p) = 4 &, P

where ""b is considered as & graded ring conc‘entrated in degree zerc. It is known
([BassJ. p.637) that P is non-canonically isomorphic to

4@, ™(p) = _LLA(-n)@AD‘I‘(P)n

[+] i
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100 - 24

It follows that P > F.F is an exsct functor from Per(A) to itself, and that there is

s canonical isomorphism of exact functors

F_B/¥ P o= A(-n)@ADT(P)n )

n=-1

M

Applying Cor. 2 to the identity funmctor of Eq and the filtration O = F_q_1 C..c:Fq = id, &
one sees that the homomorphism l%?
{ ] t"®K A — X , t'®x > (a(-n)®, 7),x Eo

ivo i=q , A i

-q£0¢q o .I:._E

is ar isomorphism with inverse given by the map with components (’l‘n) x» -1§0ngq . Since 3
_I:g:r(k) is the union of the Eq » the proposition results from §2, (9). %;}

§4. Reduction by resolution

'In this section M denotes an exact category with a set of isomorphism classes, and

P a full subcategory glosed under extensions in M in the senae that P contains a zero

object and for any exact sequence in M

(1) 0 ——p K > M B U

if H' and M" are isomorphic to objects of P, so is M. Such a P 1is an exact

category where a sequence is exact if and only if it is exact in M. The category QE is ?_
a subcategory of QM which is not usually a full subcategery, as E—admisible monomor- g

phisms and epimorphisms need not be P-admissible. : %
In the following, letters P, P', etc. will dencte objects of P , and the symbols

>, ~=> , & will always refer to M-admissible monomorphisms, epimorphisms and
subobjecta, respectively. The corresponding P-admissible notions will be specified

explicitly., For example, F >+ P' denctes an M-admissible monomorphism between two
objects of P ; it is P~admissible iff the cokernal is isomorphic to an object of P .
We are interested in showing that the inclusion of P in N induces isomorphisms

Kig = KM when every object M of M has a finite P-rasolution:

(2) 0 > P > veves > P > M >0,
n ' [»]

The standard proof for Ko consists in defining an inverse map K DI-=1 — Kog by showing ‘
Z (-Un[Pn}E Koz depends only on [M] . By Cor. 3 of the preceding mection, this method::-
works when there exist resolutions (2) depending on M 4in an exact functorial fashiom.
However, thia situation occurs rarely, sc we must proceed differently,

The following theorem nandles the case whers resolutions of length one exist. As an

under axtensions and is such that

i) For any exact sequence (1), if M is in P, then M' is in P .
ii) For any M" in M , there exists an exact sequence (1) with

M
Then the inclusion functor QP —» QM is s homotopy equivalence, so K P =K. M .



Procf. We factor Qg — Qlé into twe inclusion functors
) JE SO Y

. -_;'HB-I‘-G- — Sﬁvia_the_full Bu'bca'te'gory"‘"of*“"QE . with‘thesme "”Objec tsaa . Q._._P. W will PLOVE - -

g and f are homotopy equivalences.

To show g is a homotopy equii'alence, it suffices by Theorem A to prove g/P is
contractible for any object P in C . The category g/P is easily seen to be equi-
valent to the ordered set J of g—admissible ileyers (MQ,M1) in P such that M.I/MDE 1;.
vith the ordering (no.m1)-¢(né.w) ifr M)SH M <M and mo/m; ' n;/rn:1 €P. By

1 1
hypothesis 1), obe knows that M, and ¥ are in P for every (MO,M1) in J. Henee
in J we have arrows

(no,n1) < {om,) - {(0,0)

vhich can be viewed as natural transformations of functors from J to J joining the
functor (MD.M1) > (O'Mi) to the identity and to the constant functor with value (0,0).
Ueing Prop. 2, we see that J, hence g/P , is contractible, so g is a homotopy
equivalence, ' ‘

To.prove [ is a homotopy equivalence, we ahow M\i‘ is contractible for any M in
Q&. Put £ = M\i‘ ;: 1t is the cofibred category over g consisting of pairs (P,u) with
u:¥-—>P apepin Q. Llet F' be the full subcategory consisting of (P,u} with u
surjective. Given X = (P,u) in F, write u-= 1,3! with j:P—»M,i:PFrap,
By hypothesis i), P is in P as the notation suégesta. Thus ¥ = (}-3,.1!) is an object
of F', and i defines a map X — X. One verifies easily that X -+ X is & universal
arrow from an object of z' te X , hence X I—)J-{ is right edjoint to the inclusion of
_If_:' in z « By Prop. 2, Cor. 1, we have only to prove that F' is contractible.

The dual category F'? is the category whose objecte are maps P —» M , and in
which a morphism from P —»M to P' —M is a map P —» P' such that the obvious
triangle commites, By hypothesis ii),_there is at least one such object Po--»ﬂ .

Given snother P — M, the fibre product P :‘;MPD is an object of E , 88 it is an
extension of P by Ker (P —» M) which is in P Ly hypothesis i), Hence in F'O we
beve arrows ‘ '

| (P —> M) ¢~ (Pxp ~»H) —> (P —»H)
which may be viewsd as natural transformations from the functor (P—w M) o (P IMPo- —-}H‘:)
to the constant functor with value Po—» ¥ and to the identity functor. Using Prop. 2,
we conclude that F' 1a contractible, finishing the proof of the theorem.

Corollary 1, Assume P is closed under extensions in ¥ and further that

a) For every exact sequence (1), if M, M" are in P, then 80 is M'.

b) Given j : M — P, there exists j': P'—pP and f :P' =¥ such that
jf = 3'. (This“holds, for example, if for every M there exisis P'=s9» M ,)
Let __1=_'n be the full subcategory of M consisting of M having P-resolutions of length
l‘.‘.’s_n, i. e, such that there exists an exact sequence (2), and put 1=9cn =U.I—:n . Then

:‘ ‘

[t

I{i=1: -_— K:i.£1 o ....-"‘-#Ki_?_;m.
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That P is closed under extensions in H , and hence the groups Kiz n 8Te defined .7
results from the following standard facts (cumpare [Ba.BS, P 39])

Lemma, For any exsct sequence (1) and integer n%0, we have

1) Mep , M'€R ., = u'egn ' \ -

2) M, Mv 62,;..4 =7 MEP |

3) M, M'ER , =P M'é

Assuming this, we apply Theorem 3 %o the pair P C_‘.E_'n_M . BHypotheais ii) 4is satis-
fied, for given M&P » there exists an M-admissible epimorphism P—wM with PEP;
and by 1) it ia zm_,l—admissible. The other hypotheses are clear, so K.P = KB
for each n. The case of zm follows by passage to the limit (§2. (9)). .

To prove the lemma, it suffices by a simple induction to treat the case =n = 0.

1): Since M"E§1 , there exists a short exact sequence P'— F —pM", so we can

=n+1

form the dingrsm on the left with short exact rows and columna

0 ——+ P! — P! R'~—» R ———> R"
Ll I T
M' —+ F — P P! — P'® P* —P"
L B B
M' M —— M" M'——r N ——— N"

and with F =N TP - Since P', M arein P and P 1is closed under extensions, we
have FE€P . Since F, P& P we have from a) that M'€P , proving 1).
2): Since M"EP,, there exists P —»- 1", so applying b)) to pry : Pxy M P, >

we can enlarge P and find P" —» M factoring into P" —a M —-M", Thus we can form

the above diagrem on the right with short exact rows ami columns, and with P', R'¢ P as

MW'CP, . Applying 1) we see that R"EP, so RCP and MEP, , proving 2).
3): Since Mg 1==1, we can form the diagram with short exact rows and columna

Pt se——P'—0

L

K—=>P wesp N

L

M' e M —— M"
As KvE R, 1) implies KEP, so H'¢ P, , proving 3). The lemma and Cor. 1 are done

As an erample of the corollary, take B= P(A) and H = Mod(A), the category of e
{left) A-modules. (Batter, 30 that M hes a set of iscmorphiam classes, take H to bo;
the abelian categoery of rll A-modules of cardinality <=«(, where « 1is scme infinite
cardinal > card{a).) Let P (A) be the category of A-modules having P-resolutions
length < n, and gm(A) = {J gn(k). Then ER(A)= P as in the corollary, so we ob

Corollary 2. For 0gu§m, we have K.A =K (F (4)). In particular if 4 is}
regular, then K. 4 S5 Ki(Modf(A)), where Modf(A) 1is the category of finitely gens
A-modules.




!
We recall that & regular ring is a nostherien ring such thet every (left) module has
finite projective dimension. For such a ring 4 we have gm(A) = Hon;i‘(A).
Similerly, Cor. 1 lmplies that for a regular noetherian separated acheme the K-groups
of the category of coherent aheaves and the category of vector bundles are the same, eince
every coberent sheaf has a finite resoluticn by vector bundles [SGA 6, I, 2.2_].

Tranafer mapa. et £ : A= P be a ring homomorphiem such that as an  A-podule B
is in g m(k) « Then reetriction of acalars defines an exact funcior from gm(B) to

Pm(L), hence by Cor. 2 it induces a homomorphism of K-groups which we will denote
(3) fot KB —rKd |

and call the transfer map with respect to I, Clearly given another homomorphimm
g:B->C with CEPR_(B), we have

(4) (gf)* = f*g... : Kic — KiA )
We suppose now for simplicity that A and B are commutative, so that we have functors
B(a) x p (&) —> P (&) , (PM) 1> PRK.

for O&ngm, which induce a product XK A@K.A — K4, [Flee (P@A?)*z , and

gimilarly for B. Them if f* = (B @1?)* : KiA ->KiB, we have the projection formula

(5) ‘ £,{f"xy) = x-1y

for x¢ Kn.& and y€K.B . Thie results immediztely from the fact that for X 4n E(A)
there is an isomorphiam of exmct functors

Y.E--)- (BGAX)®BY = X@AY .
(4} -

Corollary 3. let T = {Til ' 121} be an exact connected sequence of functors from

from gm(B) to P

an exact category to an abelian category 4 (i.e. for every exact sequence (1), we

have B long exact aeguence

> TZH" = T1M' — Ti” — '1‘11'!" ).

Let P Dbe the full subcategory of T-scyclic objects (Tnﬁ =0 for all nz21), and
aosume for each M in 11 that there exists P —w» M with P in z , and that TnM =0
for n sufficiently large. Then K:Lz %Kig .

This results either from Cor. }, or better by applying Thecrem 3 directly to the
inclusion gnc gm-‘l y Where En consists of M such th.at' THE=0 for jon.

Here is an application of this result., Put KA = Ki(Modf(A)) for A noetherian,
and let f : A -3 B be s homomorphism of noetherian rings. If B is flat as a right

A-poduie, then we cbtein & homomorphism of K-groups

(6) (88,7), : KJ4 = KB

because BQA? is exact. But more geherally if B is of finite Tor-dimension =s & right
A-module, then applying Cor. 3 to K = Modf(A) and TnH = Torﬁ(B,M) .
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we find that K;Ll: = KiA . where _E is the full subcategory of Modf(A) consisting of

M sueh that TnM =0 for n%>0. 8ince B@A? is exact on g » we obtain a homomorphism

(6) in this more general situation, :
§5. Devissage and localization in abelian categories ..::

In this section é will denote an abelian category having a set of isomorphism
classes of objects, and E will be & nop-empty full subcategory closed under taking i
subobjects, quotient objects, and finite products in A. Clearly .l; is an abelian cate~

Ee ST

img

gory and the inclusion functor E —+ A 1is exact. We regard A and 2 as exact cate-
gories in the obvioua way, a0 that aﬁ monomorphisms and epimorphisms are admissible.
Then QB is the full subcategory of QA consisting of those objects which are also
abjects-of B. )

Theorem 4, (Davisgge) Suppose that every object M of é pas a finite filtration
0= )loc: M1C..CMn =M guch that Mj/nj-‘l ig in B for eamch Jj. Then the inclusion
functor QB —> QA is a homotopy equivalence, 80 Kig = Kiﬁ .

Proof. Danﬁting the. inclusion functor by f, it suffices by Theorem A to prove
that /¥ is contractible for any object M of A The category f/M is the fibred
category over Q,'l; consisting of pairs (N,u), where NE Qg and u : N —M is a map in rgg
Q. By associating fo u what might be called its image, that is,the layer (M_,N,) of &

o
K such that u is given by an isomorphism K = M1/H° y it is clear that we obtain an g
equivalence of f/M with the ordered set J(M) consisting of layers (HO,M'l) in M %

such that Mt/noeg. with the ordering (Mo,n1)5 (u&,m;) iff M CHK CHCH .

By virtue of the hypothesis that M has a finite filtration with quotients in B,
it will suffice to show the inclusion 1 : J(M') —» J{M) 4is a homotopy eguivalence
whenever M'C K is such that M/M'EB. We define functors

r 2 J{K) - 30, (M M) b (K AN, K AKY)
s JH) — I, (MD.Mi) b (M AN, H1) N

These are well-defined because

) t 17 1)
BN /Mor\M < K, /MOAH et mi/noxnfn

and because E 1is closed under subobjecta and producis by assumption. Note that ri= .
= 14

id.J(M,) and that there are natural transformations ir —» 5 & idj(ﬁ) represented by
' 1) < t >
(nonm » KNl ) € (MonM , M1) > (Mo, Mi) .
Hence by Prop. 2, r is a homotopy inverse for i, s¢ the proof is complete,’

Corollary 1, Let ﬁ be an abelian category (with a set of isomorphism classes

that every object has finite length. Then
ka4 == I %D
. i= jei 173
where {xj, Je J} is s set of representatives for the isomorphism clasges of simpls

oy
ya

objects of A , and D:.F is the sfield End(xj)"P.




Proof. From the theorem we have K B = KiA s WOEere B is the subcategory of semi-

simple objects, B0 we reduce to the case where avery object of 4 is semi-simple. Using
the fact that K-gToups commute with products and filtered inductive limits (§2, (8),(9))

we reduce to the case where é hes & single simple object X up to iscmorphimm. But
then M w Hom({X,M) is an equivelence of 4 with g(D), D = End(%)%P, so the corollary

follows.

Corollary 2, If I is s nilpotent two-sided ideal in a noetherian ring A, then
K'(A/I) K'A , (notation as in 84,(6)). ‘

This results by applying the theorem to the inclusion Modf{A/I) < Hodf(A).

Theaorem 5, (localiszation) Let" B be a Serre subcategory of 4 , let A/B be the
associated gquotient abelian category ( sae for example [GabrielJ [Swan]) and let
e:B— 4,8 : A= A/B denote the canonical functors. Then there is a long exact

sequence 8 . . o 5
faeee  — Ki(A;/E) ;Kog — Koé - #xo(é_@) — 0.,

(It will be clear from the proof that this exact sequence is functorisl for exact
functors (ﬁ.l_i) —r (lgl',g'). Unfortunately the proof does not shed much light on the
nature of the—boundaw map O ¢ A/B) — K, (B) , and further work remains to be done
in this direction.)

Before taking up the proof of the theorem, we give an example,

i+1

Corollary. If A is a Dedekind domain with guotient field F, there is a long exact
sequence ‘

—> K F — .J;l_ K (4/p) ——> Ep — KF —> .
where m runs over the merimel ideals of A.

This follows by applying the theorem to A = Modf(4), with B the subcategory of
torsion modules, whence éfg is squivalent to Modf(F) = E(F). (compare [ Swan, p. 115]).
¥e have XA = KA by Cor. 2 of Theorem 3, and K, 3B =_[_LK1(A,/m) by Theorem 4, Cor. 1.
Note that the mmp KiA — KiF in the exact sequence is the one induced by the homomor-
phism A —+F ms in §2, (10), and the map Ki(A/m) — KA is the transfer map associ-
ated to the homumorphi'sm A — A/n in the sense of the preceding section.

Proof of Theorem 5. Fix a zero object 0 in é ’ Snd let 0 elsc denote its image
in A/B. *One kmows that B is the full subcategory of A consisting of N such that
aM = 0, Hence the composite of Qe : B Q% with Q@ : QU - Q(_é_/g) is isomorphic to
the constant functor with value 0, sc Qe factors

@—> O\@—— %
Ml-»(m,o—am), (Nyu) bmen N .

In view of Theorem B, §1, it suffices to establish the following assertions.

a) For every u: V'V in Q(A/B), u*: V\@s ~> V\Qs is s homotopy eguivalence.

b) The functor QB = D\ Qs 4is a homotopy eguivalence,
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w=4, , £: V>V, Finally we bave 4,i,,, =i, , 80 it suffices to prove &)

Factoring u into injective and surjective maps, cne sees that it suffices to prove a)
when u is either injective or surjective. On the other hand, replacing a category by
its dual does not change the Q-category (§2,(7)). As surjective maps in Q(é/g) become

the injective map LV! for any ¥V in é/g .

Let P, be the full subcategory of V\Qs consisting of pairs (M,u) such that
u: VoM is an isomorphism. Clearly £0 is isomorphic to QB , so assertiom b)
results from the following.

lemma 1. The inclusion functor EV - V\Qs iz a homotopy equivalence.

Denoting this functor by £, it suffices by Theorem A& +to show the category i‘/(M,u)
is contractible for any object (M,u) of V\W@s. Let themap u : V — sM in 'Q(é./]:!) be
represented by an isomorphism V = V1/V° , where (VO,V1) isa layer in sM. It is
easily seen that the category f/(M,u)} is equivalent to the ordered set of layers
(¥ ,4,) 4o M such that s ,aM,) = {V,.¥,), with the ordaring (HO,M1)$_ (M;,M;) iff

Mc"CMOC M1C M; « This ordered set is directed because

(M M) € (M Al Boe M) = (M2
It ies non-empty because any subobject V1 of aM is of the form a!'i1 Tor scme M.ch.
In effect, V1 = g for some N in 4 , and the map V1 —» sM can be represented as
slg)a(1)”" where i : N'>—> N has ita cokernel In B and g : N' =M is amapin 4;
then one can take M, to be the image of g. Thus f/(M,u) is a filtering category, =0

1
it is contractible by Prop. 3, Cor, 2, proving the lemma.

The next four lemmas will be devoted to proving that the category 5‘, is homotopy
equivalent to QB. To this end we introduce the following auxiliary categoriesa. Let N
be B given object of A, and let 5‘ be the category having as objecta pairs {M,n),
where h : M —> N isa mod—g isomorphism, i.e. a map in A whose kernel and cokernel are :
in B, or equivalently one which becomes an iscmorphism in Q/E A morphism from (H..h)
to (M',h') in E; 1is by definition amap u : ¥ ~»>M' in Q4 such that

(*) jl, . lh'

Az

of B determined up to canomical isomorpnism. To the map {(M,n) => (M',n') represented:
by (*) we associata the map in QE represented by the maps

Ker(h) €hmmmm— Kor(hj) Se————p Kér(h')

induced by j and i respectively. It is easily checked that in this way we obtain &
functor -

ky : By —> @ , (M)} > Ker(n) :
determined up to canonical isomorphism. We prove k; is s homotopy equivalence im twa



ARV

.

- pomotopy-equivalence

- In 'lower' K-theory one calculates with matrices - in 'higher' K-theory with functors,)

" where N iz in A amd g el %YV is an isomorphism in yg,inwhichamarphim

functor g, : EN '*‘:'N' , (M,h) > (M,gh) is a homotopy eguivalence.

steps.
Lesma 2. Let E\ be the full subcategory of Ell congieting of pairs (M,h) such

o———

tbat bt M —>§ is an epimorphimm, Then the restriotion ki : Bt —> QB of k, isa

It suffices to prove k;,/w is contractible for any T in Q8 . Put C = KI/T; it
is the fibred category over E. consisting of pairs ({M,n),u), with (¥,h) in E! , and
where u : Ker(h) =T is amapin QB Llet C' be the full subcategory consisting of
((,h),u) with u surjective. Given X = ((¥,h),u) in C , write u=;j’.tI with
i:Ker(h) =>1T ,J:T-~»7 anddefine (1¥B) by 'pusbout':

Ear{h) Sue——p ¥ |

AN

et X = ((:.,M,H)..j"); it belongs to C' and there is an evident map X =3 X, (me
verifies ag in the proof of Theorem ';that X —X is & universal arrow from X +to an
object of c'. Hence the inclusion c ‘= C has the left adjoint X > X, 80 we have
reduced to proving that C' is cantractibl;. But C' hes the initial object

((N idli)’ jT), 50 this is clear, whence the lemma. ' '

Lemma 3. The functor kN : EN - QB is a homotopy eguive.lence.

.'I‘ha.uka to the preceding lemmm, it suffices to show the inclusion Eﬁ "’EN is g
homotopy equivalence. Let _E. be the ordered set of subobjects I of N such that N/I-
isin P, and consider the functor f : E ~+ 1 sending (M,h) to Im(h). One verifies
easily that § is fibrad the fitre over I- bemg E! , and the base change functor from

=1

ot 1]
El to E} being JzI? i (M~ 1) = (J :r.IF -#J). BSince J x,? commtes with k;

and kJ , it follows from Lemma 2 that J I'I'? ie & homotopy egquivalence for every arrow

JCI in ;. From Theorem B, Cor., we conclude . Ei is homotopy equivelent to the
homotopy-fibre of f over I. Since I is contractible {it has ¥ for final object),
one knows {rom howotopy theory that the inclusion Ei s E‘N is a homotopy eguivalence
for sach I, proving the lemma.

We now want to show I:V is homotbpy equivalent to E.N when ' sN &£ V., First we note

a aimple consequence of the preceding.

Lemma 4. Let g¢: N —=N' be amapin A which is 8 mod-} isomorphism. Then the

One verifies essily that by associsting to (M,h)€ E, the obvious injective map
Ker(h)—y Kar(gh) one obtains a natural transformation from ky to kg, . {Cbserve:

Thus kN ang ku.g. are homotopic, end since kN and }:N,' are homotopy equivelences,
a0 is g, , whence the lemma. T '
Now given V in é,/g  let L be the category heving ss objects pairs (N,¢),

- e R R e e R
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(N,#) => (N',d') isamap g : N— N' such that g's(g) = 4 . It is clear from the
conpstruction of 5/3 that Iv is a filtering category. For example, given iwo maps 8y ;ﬁ

: {N,g) = (N',d') we have 5(51'52) =0, 80 Im(g1-gz)e B, hence we obtain & map :
(N'.d' ~> (N",g") equalizing g,.8, with N" = ¥'/In(g -g,).

We have a functor from I, to categories sending (N,fd) to .EN and g : (N,d) =
(N*, ") to g, * By = E;, . Further, for each (X,4) we have a functor

P, ) "B Ly . (¥,n) > (N, s(;)"fﬂ ¥ 2% s 23 aM)

Since p(H,'#,)g* = P(Nsd) for any map g ! (¥, &) -+-(N',ﬁ') in EV , we obtain a
functor

(%) Lin, {(N,6) > By} == F
which we claim is an isomorphism of categories. In effsct

(M, 8+ V 2 ai) = ppy onty(Myidy)

for eny (M,8) in Fy » showing that {#*) is surjective on objects. Also given
p(Nm/)(l'i,h) = P(y,g){#'s0'), then H =¥’ and s(h} =s(h') . letting N' = N/Im(h-h')
we otain a map & : (N,#) > (N',#') such thaz g,(¥,h) = g, (¥',h'), showing that (**)
is injective on objects. The verification that (**) is bijective on arrows is similar.

Applying Prop. 3, Cor. 1, we obtain from Lemma 4 and (**) the following.

Lemma 5. For any g : s =V, the functor (N, 4) is a homofonx eguivalence.
L}

The end is now near. To finiah the proof of the theorem, we have only to show
(iv!)*‘: v\Qs -» O\\Qs is & homotopy squivalence. Choose (N,#) as in Lemma 5 and fomm é@

the diagram
E, -—-—-ﬁl—> PV \Gs
| Loy
@ —==—» F 0\

The disgram is not commutative, for the lower-left and upper-rzght patha are reapectively
the functors

(M,h) +——> (Ker(h), 0 & s(Ker(n)) )

(Myh) b= (M, (1), : 0 —> k),
However it is easily checked that by associating to (M,h) +the obvious injective map
Ker(h) -> M, one obtains a natural transformation between these two functors. Thus the B
diagram is homotopy computative, and since all the arrows in the diagram are homotopy‘ -
eguivalences except possibly (iv!)* by Lemmas 1, 3, and 5, it follows that (iV!)*
ong also. The proof of the localization theorem is now completa.



g6. Filtered rings and the homotopy property for regular rings

Thie section contains some imporiant applications of the preceding results to the

groups_KiA = K, (Modf(.&)) for A noetherian, If A_is regular, we have KA = KiA by
the resolution theoram (Th. 3, Cor. 2), 80 we also obtain results about KiA jfor A
regular. In particular, we prove the homotopy theorem: KiA = Ki A[t]) for A regular,
Aceording ‘to [ Gersten 1:], this signifies that the groups KiA are the same as the
E-groups of Karoubi and Villamsyor for A regular (assuming Theorem 1 of the announcement
[Quillen 1] which aagérts that the groups Ki.ll. are the same g8 the Quillen K-groups of

[cersten 1]).

Graded rings. lLet B =_U_ B » D20 Dbe B graded ring and put k= Bo » From now on
we consider only graded B—modules K= _U_ N with n>0, unless specified otherwise. Put

'I‘i(N) = 'I‘ori(k,N)

where k is regarded as e right B-module by means of the a.ugmantstion B -k, Then
Ti(ﬂ) is & graded lk-module in a natural way, €.g. TD(N)n = N / LR 4 AnNo).
Denote by F N the submodule of N generated by Nn for n<p, so that we have

0=P NCFNC..,[JRN=N Itisclear that
0 >
(1) T(FN) = P
o' p’'n TO(N)n ngp

and that there are canonicel spimorphiams
(2) B(~p) 8, TO(N)p — FPN/FP_1N
vhere ‘B(-p)n = Bn_p . .
Lemms 1. If T, () =0 and Tor (B T, N)) =0 forall i)0, then (2) 4is an
isomorphism for all p. '

Proof. For eny k-module X ‘we have
(3)  Torf(BX) =0 for 1>0 ==> 7,(B@X) =0 for 1>0,
In effect,if F. is a k—pfojective resolution of X, then B& P. is a B-projective

k
resolution of B @ X , and Ti(B nkx) = Hi(k 8 ﬁkP..) = H

i(P.) =0 for i»0. In
particular by the hypothesis on TO(N), we have

(4) _ Ti(ﬂﬂkTo(N)) = 0 for 1>0.

Let RP be the kernel of ({2). Since (2) clearly induces an isomorphism on T, we

obtain from the Tor long exact sequence an exact sequence
7, (B(~p) akwa(m)p)ln ~ T, (FPN/FP_1N)n-§h To(Rp)n——,-.a- s
The first group is zero by (4), so O is an isomorphism. .

Fix an integer s. We will show that (2)- is an isomdrphi:am in degrees § B8 and
aleo that T1(F N)n =0 for ngs by decreasing inducticn on p. For large p, this is 'ﬁ}_“
true, because Ti(FpR)n = T‘l (N)n for pzn , and because T, (N) = 0 by hypothesis,
Assuming 1T, (F;-‘N)n =0 for n<s, we find from (1) and the exact sequence
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Ti(FPN)n —+T1(FPN/FP_1N)n. — 'rc'(}?p_1 ) —_ TD(FPN)D

that T1(FpN/Fp—1N)n = To(Rp)n =0 for ng<s. It follows that RP is zero in degrees

£ 8, showing that (2) is an isomorphism in degrees %8 as claimed. In addition we
= - o < h

find O TZ(B( p) ﬂkTo(N)P)n TZ(FPN/FP-JN)n for nga, whence from the exact sequence

TE(FPN/FP_1N)n — T, (r‘p_‘n)n — T, (FpN)n
ve have Ti(Fp-‘lH)n =0 for ngs, completing the induction. Since 3 is arbitrary,

the lemms is proved.

Suppose now that B is (left) noetherian, and let Modfgr(B) be the abelian
category of finitely generated graded B-modules. Its K-groups are maturally modules
over Z[t}, where the action of t is induced by the translation functor N HN(—!).
The ring k is also noetherian, so if B has finite Tor dimension a8 m right k-module,
we have a homomorphism (g4,(6))

(5) (Be7), + Kjk —> K, (Moafgr(s))

induced by the exact functcr B Q ? on the subcategory F of Modf{k) consisting of
k-modules F such that Tor, (B F) =0 for i>0.

Theorem 6. BSuppose B is & graded noetherian ring such that B has finite Tor
dimension as m right k-module, and such that x has finite Tor dimension as a right
B-module. Then (5} extends to a Z[t]-modula isomorphism

Z[t] By Kik =% K (Modser(B)) .

1
{The hypothesis that k be of finite Tor dimension over B is very restrictive.
For example, if k 4is a field and B 1is commutative, then 3 has to be a polynomial
ring over k. In all situations where this thecrem is used, it happens that B is flat
over k. Does this follow from the assumpltion tha{ B and k are of finite Tor dimen- i
sion over each other?) | .
Proof. Let N' be the full subcategory of Modfgr(B) consisting of N such that .
T, (N) O for 130, and let H" be the full subcategory of K' comsisting of N such -
that m (N)E F . By the finite Tor dimension hypotheses snd tha resolution theorem (34)
one has isomorphisms KF=Kk, KN =KN = Ki(Modfgr(B)). Let K* be the full |

i i=
subcategory of N" consiating of N such that FnN = N. We have homomorphisma

B = K (F) ok (41) = (KF)°
induced by the exact functors (F.‘.i y 0€ign) _u, B(-3) @ Fj (this is in N" by (3 ik
and N b (TD(N)‘j) Tespectively. Clearly cb = id. On the other hand, by Lempma 1 any;
in N' has an exact characteristic filtration OCF NC..CF N =X with F N/P ¥
Bi-p)} ak-ro(m)p » 80 applying Th. 2, Cor. 2, cne finds that bc = id. Thus b is an ¥
isamorphism, s¢ by passing to the limit over n we have Zl_t]ﬂ KiF- —'Kig", which pro
the theorem. .

The following will be used in the proof of Theorem 7.




lewms 2. BSuppose B is noetherian, k is regular, and that k hss finite Tor

. dimansion as & nt B-module. Then sany N in Modfgr(B) has & finite resclution by

finitel rated projective ed B-modules,

Proof, Starting with N_ =N, we recursively comstruct exact sequences in Modfgr(B)
o—-,'-Nr —* Py~ 0
where Pr-1 is projective. We have itc show Nr is projective for r large. Since

m () = T () for 150, 1t follows that 7,(N) =0 for 1>0 and r2d, where
4 4is the Tor dimension of k over B. Then for r>d we have exact sequences

0 7 (N) s (P, ) e T (N ,) =30 .

As k is regular, To(Nd) has finite projective dimension s, 80 Tu(Nr)‘ is projective
for r» d+s . It follows from Lemma 1 that Nd+s is projective, whence the lemma,

‘Filtered rings. let 4 be & ring equipped with an incrsasing filtration by subgroups
0=F ACFACFRAC... suchthat 1€F A, FATACE 4, and UFPA =4, Let
B=gr(a =11 FPA/FP_1A be the masocisted graded ring and put k = FDA = Bo . By a
filtered A-podule M we will mean an A-module egquipped with an increasing filtration
o=F MCFMC.. such that FATMCE N and UFPM =M. Then gr(M)=
_U_ FPM/PP_1M ie a graded B-module in a natural way.

Lemms 3. i) ir gr(M) is & finitely generated B-module, then ¥ is & finitely
generated A-module. In particulgr, if every graded left ideal jn B is finitely

generated, then A is noetherian.

ii) _I_i_‘ gr(M) is & projective B-module, then M is a projective A-module.
iii) pey gr(M) bas g resolution by finitely generated projective graded B-modules

of length €n, then ¥ has s P(A)-resolution of length < n.

Proof, We use the following consiruction. BSuppose given k-modules Lj and maps
of ke-modules Lj—a- FJ.H for each j>0 suchthat the composition

Ly ~>F M > grj(ﬂ) —_— 'I‘m(gr(MJ)'j

is onto. let P Dbe the filtered A-module with FnP = Fn—jA ﬂkL 3 and let p’ t PN
be such that p’ restricted to & le':j is the A-linear extension of the gj.ven map from
L, to FM. Then 'I‘c(g'r(P) )3 =L, , and ¢ i = mep of filtered A-modules such that
'I‘o(gr(p')) is onto. It follows tha't:. gr(¢) is onto, hence F'n(d) is onto for all m,
‘and s0 ¢ is onto. Thus if K = Ker(g) , FK=XnFM, we have an exact sequence of

A=-modules

. 0 === K > P > M - 0
much that |

_— 0 - ;FnK :FBP —;FnM » O
6) - 0 — gT K = gr P ~—> gr H —> 0

are exact for all =n.
i): If gr(M) is a finjtely generated B-module, then To(gr(rd)) is a finitely
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generated lk-module, hence we cen take Lj to be a free finitely generated k-module
which is zeroc for large j. Then P is a free finitely generated A-module, so M is
finitely generated, proving the first part of i). The second part follows by taking M
to be a lef't ideal of A and endowing it with the induced filtratien FnM = M;\FHA .

ii): If gr(H) dis projective over B, then To(gr(M)) is préjective over k, and
we can ‘take Lj = To(gr(M))j + Then To(gr(ﬁ)) is an isomorphiam, so from the exact

sequence

2, {er()) —> T _(gr(K)) —> 1 (er(P)) ~—T (er(M))

we conclude that T'o(gr(i{)) =0, Then gr{K) =0, 80 K=0, ¥ =P, and M is
projective over 4, proving i1).

id4): We use induction on n, the dase n=20 -heing clear from i) and ii).
Assuming gr{(M) has a resolution of length & n by finitely generated graded projective /
B-modules, choose P &as in the proof of i), so that gr(P) is a free finitely generated K:“
B-module. From the exact sequence (6), and the lemma after Th., 3, Cor. 1, {or Schanuel's ‘
lemma), we know that gr(X) has a resolution of lensgth < n-1 by finitely generated
graded preojective B-modules, Applying the induction hypothesis, it follows that £ has
B E(A)-resolution of length < n-1, so M has a Z(A)-resolution of length < n, as was

to be shown.

Lemma 4, If B is poetherian, k is regular, and if k has finite Tor dimension
83 & right B-module, then A4 is regular.

This is an immediate consequence of Lemma 2 and Lemma 3 1ii),

We can now prove the main result of this section.

Theorem 7. Let 4 be & ring equipped with an increaging filtration

‘0=F ACPACRHAC ... suhthat 1€FA, FAFACFE A ,am UFPA = A. Supposs
B = gr(A) is noetherian and that B is of finite Tor dimension as a right module over

BO = FOA. (hence FOA and A are noetherian and A is of finite Tor dimension as a
right FOA-mcduJ.e). Suppose also that FOA is of finite Tor dimension as a right
B-module. Then the inclusion FACA induces isomorphisms K!(F 4) & KA, If further

F A is regular, them so is A, and we have isomorphisms Ki(FOA)-ﬁi-KiA .

Proof, _Put k= FOA. SiPce B is noetherian. we lnow A is also by Lemma 3 i)-f‘
Also if B has Tor dimension d over k, then FnA/Fn-1A has Tor dimension =<d ;or;
each n, so the same i3 true for FnA y and hence also for A, Thus the map Kik - Ki
is defined, and we have only to prove that {t is an isomorphism., Indeed, the last as8
;ion of the thegrem results from Lemma 4 and the fact that KiA = KiA for regular A
the resolution theocrem (Th. 3, Cor. 2). :

Let 2z be an indeterminate and let A' be the subring il(FnA)zn of afz). ve
show the graded ring A' saiisfies the hypotheses of Theorem 6. The fact that A' I
fimite Tor dimension over % is clear from the preceding paragraph. Since z is &
central non-zerd-divisor in A', we have that B = A'/zA' is of Tor dimension one o
A', As ¥ has finite Tor dimension over B, it follows that k has finite Tor dimel



over 4', Finally to show A' is noetherian, we filter A' by letting Fpﬁ.' consist of
those polynomials whose coefficients are in FPA. The Ting

ga) = Ll (er 2"

pga

is isoporphic to gr(A)[z], which is nmoetherian, heéace A' is noetherian by Lemma 3 i).
Let F be the full subcategory of Modf(k) consisting of F such that Tor:'(B.FJ

=0 for 1>0, whence K,F =KXk by the resolution theorem (.3, Cor. 3). Applying

4
Theorem 6 to B and A', we obtain Z[t]-module isomorphisms

z(t) & KF <= K (Moafgr(B)) , t@x | (BR0)x
) 2t]e KT oo Ki(Modfgr(A‘)) votRx o (AR 0)x .

let E be the Serre subcategory of A= Modfgr(4') consisting of modules on which
z 1is pilpotent. The functer '

5t Moafgr(a') —» Moaf(a) , Mi> M/(z=A)M

is exact and induces an equivaelence of the guotient catagory yB with Modf(a), (Compare'

[Bwan, P 114, 130] note that if S = {zn} , then § A' is the Laurent polynomial ring
A[z z J and a graded module over A[z 2 J is the same &s & moduls over A = A'/(=z-1)a'.)
Since A'/zA' = B, we have an embedding

i : Modfgr{R) ——» Modfgr{i')

identifying the former with the full éubcategory of the latter. congisting of modules
killed by z. The devissage theorem implies that K, (Modfgr(B)) = K;B . Thus the exsct
sequence of the localization thorem for the pair (4,B) takes the form

J

(8) —_— Ki(Modi‘gr(B)) i-,-xi(Modfgr(Aj)) 2 K14 -,

We next compute 3§, with respect to the isomorphisms (7). A4ssccisting to F in F
the exact sequence '
0 —>a'(-1) gF —2np' 9 F ——>BRF —0

we obtain an exact sequence of exact functors from g to Modfgr(A'). Applying Th. 2,
Cor. 1, we conclude that the square of Z[t]—module homomorphisms

zft] 8 X F == X, (Moafer(s))

1-t l li*

z[1] 8 K,F —"=5 K, (Nodfer(a'))
is commutative, Since 1=t is injective with cokernsl Kig y we conclude from the exact
sequence (8) that the composition

KF m——r K (Modfgr(A D) —-t-,- KA

~induced by F 1= A'R
the theorem,

kF = 48 F is an isomorphism. 3ificé K:LE = Kik » this proves
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The preceding theorem anables ome to compute the K-groups of some interesting

non-comrutative rings.

Examples. Let t'} be & finite dimensional Lie algebra over a field ¥, and let
U(OJ/) be its upiyersal enveloping algebrs, The Poincare-Birkhoff-Witt theoram asserts
that U(cg/) is & filtered algrebra such that gr(U(ﬂ'dL)) is a polynomial ring over k.
Thus Theorem 7 implies that Kik = KiU(ﬂJ«). Similarly if Hn is the Heisenberg-Weyl
algebra over k with generators Pyov 9y o 1<ign, subject to the relationa [pi,pj] =
[qi.q:j] =0, [pi'q.j] = S:.‘.j » then ve have Kk =KH .

Theorem B. If A is noetherian, then there are canonical jsomorphisma
i) Ki(A[t]) = K4

' =1 ~ 1 '
11) Kj(ales™= Kaex) 4

Proof, 1) follows inimed:l.af:ely from the preceding theorem.
i1): Applying the localization theorem to the Serre subcategory B of Modf(Aft])

consisting of modules on which t is nilpotent, we get a long exact sequence

— KB — k{(a[t]) — Ki(al_t.t"]) —
sT ) /
Kj‘_A K{A
where the first vertical isomorphism results from applying the devissage theorem to the

embedding -Modf{A) = Modf (A[t]/tA[tJ)Cg . The homomorphism A[t,t-i]—g—A sending +
to 1 makes A a right module of Tor dimension one over A[t.t-j], 80 it induces a map

Ki(A[t,t"‘l])'—-r Kj'-A left inverse to the oblique arrow, Thus the exact sequence breaks

up into split short exact sequences proving ii).

Corollary. (Fundamental theorem for regular rings) If A 4is regular, then there
are canonical isomorphisms Ki(A[t]) = KA and K.i(A[t,t-1]) = KiA@ K, .4 .

This is clear from Th. 3, Cor. 2, sines A[t] and A[t,t”'] are reguiar if A is.

Ixercise. Let ¢ be an automorphiem of a noetherian ring 4, and let A p,[t].

A p,[‘c,t_‘] be the associated twisted polynomial and Laurent polynomial rings in which
tea = gla).t .([Fa.rrell—ﬂsiang]). Show that Kia = K! (& dm) and that there is a long
exact seaquence : '
(9) — KA 1"‘2 K'a > Ki(ad[t,t’ifh — K A — .

i 1

We finish this section by showing how the preceding results can be used to computg?‘
the K-groups of certain skew-fields. Keith Dennis points out that this has scme inte:
already in the case of K2 y Since s non-commutative generalization of Matsumoto's th"f
is not kmown. {Here and in the computation to follow, we will be assuming Theorem 1-‘%
the announcement [Guillen 1), which implies that the KA here is the same as Milno

and that the groups I{iﬂ‘q are the same as the ones computed in [Quillen 2].)

]

Example 1. Let k be the algebraic closure of the finite fisld E‘p, and let &
be the twisted polynmomial ring kp‘[F] with Fx = x3 for x in k, where gq = pd-



Then A is a non-commutative domain in which every left ideal is principel. Let D be
.. the quotient skew-field of A, whence Modf (D) = Modf(A)/E, where B is the Serre sub-
eategory consisting of A-modules which are torsion, or eguivalently, which are finite

S Vo i* -J_
: (10)- > KB » KA —— KD —— K, B —s
{4 and D are regular), and we have ¥, A =Kk by Theorem 7.

An object of B is a finite dimensional vector space V over k equipped with an
additive map F : V ~— V such that F(xv) =x%F(v) for 1 in k and v 4nV, It is
well-known that V splits canonically: V.=‘Vo aV1 , where F dis npilpotent on Vo and
tijective on V1 + and moreover that

kg V &2V,
q

where V' ={v€V | Fv = v} is & finite dinensional vector space over the subfield F,
of k with q elements, Thus we have an equivalence of categories

B = Uﬁoar(a/u'“) I.Modf(}!‘q).
n

Appljring the devisasge theorem to the first factor, we obtain Kig = K:Lk@ KiE‘ .

Let ¢ : k =»k be the Frobenius automorphismm: @(x) = x%, and let ¢{V) denote the
base eitension of the k-vector space V with respect to ¢, i.e. #(V) =k ﬁkV, where
k is regarded as & right k-module vie ¢. If V 4is regarded as an A-module killed by

P, we have an exact sequence of A-modules

0 —p Aﬂkd(\’)-—-—b ARY — ¥V — 0

aB{x@ v) v axFB YV

On the other hand, if W is a finite dimensional vector space over E‘q, we have an

exact sequence of A-modules
O-ﬁAﬁEW-—-—#AﬁEW—;kﬂFW-——rO
q ‘ q q
aBvw s a(f-1)éx

vhere F acts on the cokernel by F(x 8 w) = e w. Applying Th. 2, Cor. 1, to these

“characteristic" seguences, one easily deduces that the composite

1,
Kk OKF = KB —Top KA = Kk

is zero on the factor LF, and the map 1 - g, on Kk . From [Ruillen 2] one has
1-4,
0 — XF — Kk ——th Lk —> 0

for 1>0. Combining this with (10) we obtain the formulas

exact seguences

KDD = Z , K1D = ZO®Z : 7

i
_ 2 i 2 . [
(1) K, D = (Kzi-'in) = (&/(q"1)Z) i%0
2 "
KpipyD = (Kzirq) = 0 i»0 .
123
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Example 2. Let H be the Heisenberg-weyl algebra with generators p,q such that |
pq = ¢p = | over an algebraicelly closed field k¥, and let D be the quotient skew-field
of H. In this case, one cen prove that the localization exact sequence associated to

Modf(B} and the Serre subcategory of torsion medules breaks up into short exact sequences

0 ——-a-—Kik -—-—LKiD — 'L-]'Ki-‘lk — 0

where the direct sum is taken over the set of isomorphism classes of simple H-modules.
The proof is similar to the preceding, the essential points being a) torsion finitely
generated H-modules are of finite length, because H has no modules {inite dimensional

over k, and b) k is the ring of endomorphisms of any simple H-module ([Wuillen 3]).

§7. K'-theory for schemes

1. If X 4is a scheme, we put Kq} = qu(x}, where P(X) is the category of vector

bundles over X (= locally free sheaves of O -modules of rinite rank) equipped with the

ususl notion of exact sequence, If X is a noetherian scheme. we put K’ X Kqﬂ(x),

where @(X) is the abelian category of coherent sheaves on X. The followlng theory
concarng primarily the groups -n&X. so for the rest of this section we will essume all i

schemes %o be noetherian and separated, unless stated otherwise. ; ' i

As the inclusion functor from P(X) +to HM(X) is exact, it induces a homomorphism Qﬁ

1.1 KX i'X
( ) q '--}n.q

When X is repular this is an isomorphism. In effect, one knows that any ccherent sheaf ko
F is a quotient of a vector bundle [SGA 6 II 2.2.3 - 2.2.7.1].. hence it has a resolution f%

by vector bundles, in fact a finite resolution as £ is regular and quasi-compact {see
LSGA 2 VIII 2.4]}. Thus 1.1 is an isomorphism by the resolution theorem (Th. 3, Cor. 1)

If E 4s a vector bundle on X, then F 1+ E @ F is an exact functor from M(X) tO
itself, hence as in §3 , (1), we obtain pairings.

(1.2) KXeKxX —» KX
o q q .
making Kéx a module over the ring KDX. (In a later paper I plan to extend this idea %

define a graded anti-commutative ring structure on KX such that KX 1is a graded

module over KX.)}

2. Functorial behavior, If f : X =~ Y is a morphism of schemes (resp. a flat .
morphism), then the inverse imsge functor f* : g(Y) — P(X} (resp. f* : M(Y) = H(X)
is exact, hence it induces a homomerphism of K-groups which will be denoted

{2.1) _ ™ : ¥ Y - qu { resp. f* : K&Y - Kéx 1.

It is clear that in this way K becomes a contravariant funcior from schemes to abe
groupa, and that Ké is & contravariant funetor on the subcategory of schemes and flle
morphisms,



i

Progosition 2.2. Let i p=s J{i be & filtered projective system of schemes such that

the transiticn morphisme xi - X j are aff:fne, and let X = i_:._m Xi. Then

(2.3) K} = Lm KX .

(2.4) - KX = Un KX

If in addition the fransition morvhisms are flat, then

gi”’
Proof. We wish to apply §2 (9), using the fact that g(x) is essentially the

linductive limit of the I:(Xi) by [EGA v 8.5}. In order to obtain an honest inductive

aystem of categories, we replace E(Ki) by an equivalent category using Gireud's method

as follows. Let I be the index category of the system X, , and let I' be the

i

'catego:y _obtained by adjoining en initial object ¢ to I. We extend the system xi to

I' by putting X £ = X, and let E be the fibred category over I' having the [ibre
g(xi) over 1. Let Ei be the caiegory of cartesian sections of P over I'/i. (an
object of 1=)i is a family of pairs (Ej’ &.) with EJEP(}L:}) and Bj an isomorphism
(3 -H.J*Ei = E:j for each object Jj »i uf I'/i.) Clearly P, is equivalent to P(x )
and 14> P, is a‘functor from 1° to categories. Using [EGA IV B.5] it is not hard

to see that we have an equivalence of categories
Lo (i} B,) ~— P(X)

such that a seguence is exact in E(XJ if and only if it comes from an exact sequence in
£ Ome _1_31. Thus from §2 (g} wle have qu(k) = ]i“,l J{ql_’i , proving 2.3. The prool of 2.4
is similar. .

?.5. Suppose thet T : X —~ Y is 2 morphism of finite Tor dimension {i.e. 22{ is

of finite Tor dimension as a module over r"WgY) ), and let g{r,r) ve the full sub—
catag:ory of E(Y) consisting of sheaves F such that

Q
Tor.=Y
i

QK'F)':O for 150 .

Assuming that every F in M(Y) is a gquoiient of & member of P(Y £), the resclution
theorem (Th. 3, Cor, 3) implies that the inclusion P(Y £) M(Y) induces isomorphisms
on K-groups. Combining this isomorphism with the homomorphism induced by the exact
functor £* : P(Y ) =¥ M(X), we obtain a homemorphism which will be denoted

(2.6) % 1 K'Y -~ K'X .
q q

The assumption holds if either f is flat (whence E(Y,f) = I_‘i('l') ), or if every coherent
sheaf on Y is the guotient of a vector bundle (e.g. if Y has an ample line bundle).
In both of these cases the formula (fg)* = g*f* is easily verified.

2.7, let f :+ X —> Y be a proper ﬁorphism, so that the higher direct image functors
Rif, carry coherent sheaves on_ X to coherent sheaves on Y. Let E{X_,f) denote the

s

full subcategory of M(X) consisting of F such that Rif( F) =0 for i>0. Since

- R f,=0 for 1 large I_.EGA III 1.4. 12] we can apply Th. 3, Cor, 3 +to the inclusion

E(X,f) — h_i(x) to get an isomorphism qu(l,f) —-.—K:lx, provided we assume that every
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coherant sheaf on X can be embedded in a member of g(x,f). Composing this isomorphism
with the homomorphism of K-groups induced by the exact functor f, : F(X,f) == M(Y), we 4
obtain a homomorphism which will be dsnoted ’ ‘ ﬁ'

208 f :K'x "'—’ KIY L] . .
(2.8) fIEX — ET.

The assumption is satisfied in the following casea:

i) ¥hen f 4is finits, in particular, when f is a closed immersion. In this case
Rlz, = 0 for 1>0 [EGa III 1.3.2], so F(X,f) = K(X).

ii) When X has sn ample line bundle [EGA II 4,5.3). In effect if L is ample
on X , then it is ample when restricted to any open subset, and in particular, it is
ample relative to f. Replacing L by a high tensor power, we can suppose L is very
ample relative to f , and further that L is generated by its giobal sections., Then for ;_;_'-’:)
sny o we have an epimorphism (_Q_x)m-—-r 12", hence dualizing and tensoring with L ‘

obtain an exact sequence of vector bundles

0 —» gx—»(Lﬁn)m-p E — 0.

Hence for any coherent sheaf F on X we have an exact sequence

Tl T

(2.9) O wer P —» Fn)™ e PRE — O

where F(n) Feit®, mu by Serre's theorem {Eca 11T 2.2.1], there is an n  such
that RZ (F‘(n)) 0 for i)>0, n3 n, 80 F(n) & g(x.f) for nzn . Thus F can be
embedded in a member of F(X,f) as asserted,

The verification of the formula (fg), = f,g, in cases i) and ii) is straight-
forward and will be omitted, :

Fr

Faks

s

ey

Proposition 2,10. {(Projection formula) Suppose f : X —~ ¥ proper and of finite
Tor dimension, and assume X apd Y have ample line bundles so that 2,6 and 2.8 ."_-‘-'.'i.

defined. Then for x & KX and y¢€ i{"Y we have f (x.f*y) = £ (x).y in Kc'i‘[ , where!
£,(x) is the imege of T by the hopomorphism fot KX —KY of [scas 2.12,3].

Proof. We recall that if x = LE] is the class of a vector bundle E, then f*(x).
is the claas of the perfect complex RE, (E ) Arguing as in case i.i) above, one sees
that K X is generated by the elements [E] such that R*f W{E} =0 for 1i>0. Then
Re,(E) > £,B, and f(x)=7T(1) [P]e KX , where {P,} is a finite resolution of fe
by vector bundles on Y. Let £ denote the fuill subcategory of &( Y) consisting of ?

such that i
o %
or, " (£,5,F) = 0 or, (4, F) i>0 .

it

By ‘chel'resulution theorem we have I{q& K&Y. Moreover, applying Th. 2, Cor, 3 to .

0 = PnﬂF —_— ., = PaﬁF - fERF = O

for FE L, one sees that y pf,(x):y is the endomorphism of Kc'lY induced by the ‘
eract functor Fi fLE® F from L to Ii(?f). ' L : L

From the projection formila in the darived categary: Rf,(E @,F) = Bf,(Z) & F
(see [56A 6 IT1 2.7]), we find for F in L that :



0 g £ 0

fEﬁF q=0.

Ry (E 8 £*E) = {

mhus E R f*F is in F(X £}, Bo by the definit:l.on of 2.6 gnd 2.8, we have that =

y > £, (z.f*y\) is the endomorphism of Kc'lY induced by the exact functor Fl=ef, (B ﬂf*F)
from L 10 lg’l(‘f) Sirice we have an isomorphism f,(E @ f*F) = f E# F, the projection

formulas follows.

Progositim 2.11, let

be a cartesisn souare of schemes heving ample line bundles. Assume f is proper, g is

of f:Lnite Por dimension, and th.a.t Y' and X are Tor independent over Y, (i.e.

—Y.y _ ,
Tori (Qrc’yfi gx'x) = 0 f_t_)_:_' 1)'0
for any xE€X, y'€Y', yeY euch that f(x) =y = g(y').) Then

gL, = flyg'v @ KX — K,

Sketch of proof. Set L = P(X,g’ JOF(X,f), From the formula Lg*Rf, = Rf' Lg'*
in the derived category [SGA 6 IV 3.1 0]. one deduces that for FGL we have that
f,F € P(Y g), g'*F € F{x*,1 ), end that there is an isomorphism g*f,(F) = £' g'*(¥).
Thus everything comes to showing that XK L= x'x . Since X P(K g J—%K&X , we have
only to check that the inclusion L =P x.e') induces :.somorph:.sms on K-groups., But

" this follows from the resclution theurem., because the exact sequence 2,9 shows that the

funciors Rii‘,r on the category P(X,g') are effaceable for 10,

3. Closed subschemes, Let £ be a closed subscheme of X, let i : 2 —» X be the
canonicael immersion, and let I be the coherent sheaf of ideals in 27( defining 2, The
funetor i, 1._-_1(2) - H(X) ‘allows us to identify coherent sheaves on 2 with coherent ’
eheaves on X killed by I,

Proposition 3.1. If I jis nilpotent, then 1 : KéZ —_ Kc'lx is an jisowmorphism. In
1 > "‘" t
particular, Kq(.kred)—-r qu .

This is an immediate consequence of Theorem 4.

Proposition 3.2. let U be the complement of Z in X, gnd j : U =X the
canonical open immersion. Then there is a long examct sequence

i, J* N
(3.3) RE— Kqﬂu —_— xc'lz — KX s KU

_————

Proof. One knows [Gabriel,Ch, V] that j* : yj(x) — M{U) induces an equivalence
of M(V) with the quotient category M(X)/B, where B is the Serre subcategory consis-
ting of coherent sheaves with support in Z, Theorem 4 implies that i, @ !1[(2) — E
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induces isomorphisms on K-groups, so the desired exact sequence results from Theorem 5.

Remark 3,4, The exact sequance 3,3 has some evident naturality properties which

follow from the fact that it is the homotopy exact sequence of the "fibration"

At iy e R R I

i
i
3
4
‘H
4
3

BEM(2)) ~—> Ba(M(x)) — BQM(U)) .

For exsmple, if &' 18 a closed subscheme of X containing Z, then there is a map from
the exact sequence of (X,Z) %o the one for (X,Z2'). Also a flat map f : X' —»X
induces a map from the exact sequence for (X,Z) to the one for (X',f-1Z).

Remark 3.5. From 3.3 one deduces in a well-known fashion a Mayer-Vietorie sequence

b s

K' (UAV) —= K'(BoV K'U @ K'V K(UAY) ~——a
— q+1( ) —= .q( ) — i\ v — q_( )
for any two open sets U -and ¥V of X. Starting assentially from this point, Brown and

Gersten {see their paper in this procedings) construct a spectral sequence

DY = 8P(x, k) == KLX

which reflects the fact that K'-theory is a sheaf of generalized cchomology theories in

& cartain sense. In connection with this, we mention that Gersten has proposed defining T@

et

hizher K-groups for regular schemes by piecing together the Karoupi-Villamayor theories
; belonging to the oven affine subschemes (see [Gersten 2]}. Using the above Mayer-Vietoris gﬁ

sequence and the fact that Karoubi-Villamasyor K-theory coincides with ours for regular ‘#g
K&x studied here, ¥

rings, Gersten has shown that his method leads to the groups qu

4. Affine and oroiactive space bundles.

‘Proposition 4.1. ({Homotopy property) Let f: P—»X bea flat map whose fibres ;

are affine spaces (for example, s vector bundle or a torsor under a vector bundle). Then .

i* x&x — KéP ig an isomorphism.

Proof. If ¥ is s closed suoset of X with complement U, then because f is fi&
we have a map of exact sequences '

~— K'Z —3 'Y —- KU o

q q q

1 ) $
- et I{E'IPZ —— K&P —_— Kc‘lPU e
By the five lemma, the proposition is true for one of X, Z, and U if it is true for ﬁ'
other two. Using noetherian induction we can assume the propesition holds for all closg
' subsets Z # X, ¥e can suppose X 1is irreducible, for if X = 21L122 with Z1.Zz #;
? : then the proposition holds for Z, and X =~ 2, =2, - (Z1r122), hence slso for X. W

1
can also suppose X reduced by 3.1,

] o
§ Now taike the inductive limit in the above diagram as Z rTuns over all closed Bub%;
¥ i

x‘ nh b . s 1 - Fél t = 1

# Then by 2.4, lim KU = &:(k(x)) and Lig K% = K (k(x) 2 P), where k(x)
residue field at =x, and where x 4is the generic point of X. Thus we have reduced
. the case where X = Spec(k), k a field, and we want %o prove K&k :b-K&(k[t1..-,tn1);
But this follows from §6 Th. 8 , so the proof is complete.




4.2, Jouanolou's device. Jouanolou has shown -that at least for a quasi-projective

sohene X ‘over a field, there is & torsor P over X with group s vector bundle such

that P ig ap affine scheme. He defines higher K-groups for smooth X by taking the

B x;roubi—Villsmﬂyor K-groups of the coordinate ring of P and showing that these do not
&gﬁand on the choice of P, From 4.1 it is clear that his method yieids the groups

ﬁ'x Xe xax considered here.
q

Proposition 4.3, Let E be a vector bundle of rank r over X, let PE = Proj(SE)
bﬁ the agsocidted projective btundle, where SE is the symmetric algebra of E, and let
£ : PE = X be the structural msp. Then we have & K (PE)—module {somorphisn '

(4.4) _ o PE) “xx KX = K (PE)

given by y & X p>y-f*x . Eguivalentlx. if 2€ XK (PE) is the class of the canonical
line bundie 2(-1). then we have an isomorphism

-1

(4.5) O TR U SR

Sketch of pfoof. The equivalence of 4.4 and 4.5 results from the fact that
X (PE) is a free K X-module with basis 1,..,2" ", [SGA 6 VI 1.1]. Using the exact
sequence 3,3 as in the proof of 4.1, one reduces fc the case where X = Spec(k), k a
field, By the stesndard correspondence between coherent sheaves on PE and finitely
generated graded SE-modules, one knows that E(PE) is eguivalent to the quotient of
Modfgr(SE) by the subcategory of M such that Mn = P for n large. This subcategory
bas the same K-groups as the category Modfgr(k) by Theorem 4, where we view k-modulesas
SE-modules killed by 4the sugmentation idesl. Thus from the localization theorem we have

an exact sequence'
(4.6) — I{q(MDdi‘gr(k)) LN Kq(Modfgr(SE)) L Kc'l(PE) —

where 1 is the inclusion and. j associates to & module M the associated sheaf E on
PE. From Theorem 6 we have the vertical isomorphisms in the square
. _ Kq(Modfgf(k}) ---i-*-—g- Kq(Modfgr(SE))
o i
zft] 8 ki —2—> z[t] @ Kk
Using the Koszul resolution
0 —> SB(-r) @ ATE@M —»..,., —>SE®H —> M — O

and Th, 2, Cor. 3, cne shows that the map h rendering the above square commutative is
multiplication by A_((E) = J (~t)*[AE] . Tms 1, is injective, so from 4.6 we
£et an isomorphism

_J_L tiaKék N K: (PE)

Cgigr
induced by the functors M > o(-1)
€ives the desired isomorphism 2.5.

&1 BN, 0fi<r from Modf(k) to g(PE). This

12%
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The following generalizes 3,1.

Proposition 4.7. Let f : X' ==X Dde a finite morphism which is radicisl and
purjective (i.e. for each x in X- the fibre i‘-1(x) bas exactly ome point X' and
the residue field extension k(x')/k(x) is purely inseparable). Let 5 be the multi-
plicative system in Z generated by the degrees [k(x )s k(x] for a1l x in X. Then

£, + K)(X') > KX induces en isomorphien S 1&4(::') 4 5" K'x :

Proof. If 2 4is a closed subscheme of X with complement U, and if Z' and U
‘are the reaspective inverse images of 2 and U in X', then we have a map of exact
sequencas .
— K;—(Z') — K{‘l(}{') i K&(U‘) —

[t | [( £
e Kt';z — K['!K. —-*K&U i

Localizing with respect to S and using the five lemma, we see that if the proposi‘t':ion
holds for two of fZ' £, fU it holds for the third, Thus arguing as in the proof of 4.4

we can reduce to the case where X = Spec(k), k & field. By 3.1 we can suppose

X' = Spec{k'), where k' is a purely inseparable finite sxtension of k. Thus we have
reduced to the following.

Proposition 4.8. Let f : k—> k' be a purely inseparable finite extension of
degree pd. Then f f* = pultiplication by pd on qu: gxg £+f, = multiplication by
P o K (k). ‘

Proof. The fact that £ f* = multiplication by [k':k] is an immediate consequence
of the projecticn formula B4 (5) and does no% use the purely inseparable hypothesais. i
The homomorpnismm £*f, is induced by the exact functor )

Vi kel = (e r)e,v
from P(k') to itself. Since k'/k is purely inseparable, the augmentation ideal I of

X! ﬂk k' 4is nilpotent. PFiltering by powers of I, one obtains a filtration of the alx
functor with

(k' & k') &, V) = 'LEL (1°/1™) .V .

But because the two k'-module structures on ID‘/'.!ZI:H"1 coincide, this graded functor is;

isomorphic to the functor V |» V', whers T = = dim,, (gr(k’ 2, k' = pd. Applying The
Cor. 2 to this filtration, we find £*f, = multiplication by p ' completmg the prodt

5. Filtration by support, Gersten's conjecturs, and the Chow ring. Let Iip(x)"-'

denote the Saerre subcategory of M(X) comsisting of those coherent sheaves whose SUR
is of codimension » p. (The cod;mension of a closed subset Z of X 1is the infimm’
the dimensions of the local rings _Q_x'z where z Tuns over the generic points of
From §2.(9) and 3.1, it is clear that we have

(5.1) ) k (B 00) = 1m K



. whars Z rTune over the closed subsets of codimension 2 p. We also have

(5.2) r*(!ip(x)) = gp(x') if f : X'—=>X is flet. ,
¢4 1n affect, one has %o show that if 2 has codimension 2 p.__.__in_____l_i.__then‘,",,i‘,,',? 2 has . . AN
codimension > p in X'. But if z' 4is a generic point of f—1Z and z = £(z'), then
the homomorphism 2.2{ 2}{' , 1s & flat locel homqnorphism such that rad(O )'Q.X',z'
is primsry for rad(o ' g1 )i henoe d:un(o ) = dim(0 &, ) by [EGA IV 6.9, 3] proving

+the assertion.

If X= ‘Jﬂ xi vhere 1 j» xi is & filtered projective system with aeffine flat
transition morphisms, then we have isomorphisms
). K (¥ (X = lim K (M _(X .
(5.3) LE) = Lak (K (x)

In view of 5.1 this reduces to showing that any Z of codimension p im X 4is8 of the

form r;‘(zi) for some i, where 2, is of codimension p imn Xi , and where

i
f, p xi denotes the canonical map. ¥ut for i large enough, one has 2 = :[':I(Zi)
with Zi = the closure of fi(Z). Hence any generic point =' of Zi is the image of &
generic point =z of Z, so the local rings at 2z' and z heve the same dimension by the

result about dimension used sbove. Thus 2 N also has codimension p, proving .5.3.

Theorem 5.4. Let Xp be the set of points of codimension p in X. There is g

speciral seguence

l Pq . '
(5.5) | EPHX) = ;jzl?l{_p_qk(x) - K' X
P

which is convergent when X has finite {Krull) dimension, This speciral seguence is

contravariant for flat morphisms. Furthermore, if X = l._:l._.IE Xi » where i +>X 1 is a
fi{ltered projective system with affine flat transition morphisms, then the spectral

sequence for X . is the inductive limit of the spectral sequences for the X §°

In this spectral sequence we interpret Kn as zero for n<0. Thus the spectral
sequence is concentrated in the range p>0, pig € O,
Proof. We consider the filtration

N(X) = z_goc'x) o §1(x)::
of E(X) by Serre subcategories. There is an equivalence

(KM, () = 11 U Modf(gx'r/rad(&,x)n)

xgX -1
p
so from Th. 4, Cor. 1, one has an isomorphism

K, (1 (/8 () ~ _Ll_Yk(x)

x€X o
whare k( ) is the residue field at x. From Th. 5 we get exact sequences
—-->K(p+1 ))-—»-Ki(ﬂp —r_J_l__ka)—JrK (p+1l))—>

xEK

11
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which give rise to the desired spectral sequence in a standard way. The functora.litj
assertions of the theorsm follow immediately from 5.2 and 5.3. . 4

We will now take up a line of investiigation :Lnitis.ted.by Gersten in his talk at this
conference LGerstan 3].

Proposition 5.6. The following conditions are equivélent:
1) For every p3» 0, the inclusion M (X) --}-M {X) induces zero on K-groups,
11) Porall g, 2B%X)=0 if p#0 md the edg hopomorohism ! X —» qu(x

is sn isomorphism.
1ii) For every n the seguence’

d ‘
(5.7) o—;px-——»lixx(x)—_—,HK )~ L
x&X, xEK1

is exact. Here a, is the differentisl on E, (X) and e 4is the map pbtained by

pulling-back with resvect to the canonical morvhisms Spec k(x) — X.

This follows immediately from the spectral sequence 5.5 and its coemstruction.

Proposition 5.8. ({Gersten) Let K' denote the sheaf on X associsted to the

Ereshaai‘ U v ‘:CnU . Assume that sPe"(Qx,x) satisfies the equivalent conditions of 5.6 j;

for all x in X. Then there is a canonical isomorphism

ESH(x) B (XK )
with qu(}() as in 5.5.

Proof. We view the sequences 5.7 for the different open subsets of X as a sequence il

of presheaves, and we sheafify to get a sequence of sheaves S
(5.9) 0 > X' — i (1 ),{K k(x)) —> I l (K k(x)) = ..
Xg X Xe X - .

where i:: : Spec k{x) —» X denotes the canonical map. The stalk of 5.9 over x is the
sequence 5.7 for Spec((_)__x'x) , because Spec(gx'x) = .%im U , where U runs over the
affine open neighborhoods of x, and because the spectral sequence 5.5 commtes with
such projective limits, By hypothesis, 5.9 is exact, hence it is a flask resolution of

51,'1- BO

-7

HP(X, K1)

Plors i, LL &, (0}
xE X.s

Flos B0} - 7w
as asserted.

The following conjecture has. been verified by Gersten in certain cases [Gersten 3

Conjecture 5.10. (Gersten) The conditions of 5.6 are satiasfied for the spec
of a regular local ring, Y
4ctually, it seems reasonable to conjecture thav the conditions of 5.6 hold 2@
generally for semi-local regular rings, for in the cases where the conjecture has beed




proved, the argumente also apply to the corresponding semi-local situation. On the other
pend there are examples suggesting that it is unreascnable to expect the conditions of
5.6 to hold for any general class of local rings besides the regulsr locel rings.

We will now prove Gersten's conjecture in some important egui=characteristiccases;——

Theorem 5.11. Let R be a finite type algebra over a field k, let S be a finite
M R such that RP is regular for each p in 5, and let A Dbe the
Leﬂla.r semi-local ring obtained by locmlizing R with respect to S. Then Spec A_
_gtisfiea the conditions of 5.6.

Proof. We first reduce to the case where R is smooth over k. There exists a

subfield k' of k finitely generated over the prime field, & finite type k'-algebra

R', and a finite subset 5' of Spec R' such that E =k ﬂk,R' .and such that the primes
in S are the bese extensions of the primes in 8'. If A' is the localization of R'

" with respect to S', then A=k ﬁk,A' and A' is regular. Letting. k, run over the

i
subfields of 'k containing k' and finitely generated over the prime field, we have

A=limk® A' end K*(_Q_P(A)) = }_gk,(_ﬂp(kiﬁk,aﬁ.')) by 5.3, where here and in the
following we write !ip(k) instead of gp (Spec A). Thus it suffices to prove the theorenm
when k is finitely generated over the prime field. In this case A is & localization
of & finite type algebra over the prime field, so by changing R, we can suppose k is
the prime field. As prime fields are perfect, it follows that R is zmooth over k &t
the points of &, hence alsc in an open neighborhood of S. Replacing R by R-_r for
some f not vanishing st the points in 5, we ¢an suppose R is smooth over k as
asserted,

Wa wish to prove that for any p»0 the inclusion N

p+1(A) . EP(A) induces zero on

X-groups. By 5.7 we have

Kellioyy(8)) = uim k(8 (R))

where f runs over elements not vanishing at the points of 35, hence replacing R by Rf,
we reduce to showing that the functor M_PH(R) -yréIP(A) induces zero on Ke-groupe. As

L (R)) = 1w K (4 (R/4R))
where % runs over the regular elements of R, it suffices to show that given m regular
element: t, there exists an f, not vanishing st the points of 5, such that the functor

M I—er from Iip(R/tR) to ]_vi_p(R) induces zero on K-groups.

We will need the following variant of the normalization lemma.

Lemma 5,12, Let R De a smooth finite type algebra of dimension r over s field
k, let t be s regular element of R, sand let S be s finite subset of Spec R . Then

there exist elements XyperX o R algebreically independent over k such that if
B = k.[x1 .‘..,xr_1] C.R, then i) R/tR is finite over B, and ii) R is smooth over B

at the points of S,

Granting this for the moment, put B' = R/tR and R' =R ;B' so that we have
arTows ' '
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where the horizontal arrows dre finite, Let S' be the finite set of points of Spec R!
lying over the points im 8. As u is smooth of relative dimension ome at the points of
S, u' 4is smooth of relative dimension one at the peints of S'. One knows then

[5GA 1 II 4.15] that the ideal I = Ker (R'-sB') 4s principal at the points of §',
hence prinecipal in a neighborhood of S*'. Since R'/R. ia finite, thls neighborhood
contains the inverse image of a neightorhood of S in Spec R, Thus we can find f 4n
R not vanishing at the pointa of 5 such that If is isomorphic to R‘f as an R'f-
module. We can also suppose f chosen so that R! P is smooth, hence fla%, over B',

Then for any B'-module M we have an exact seguence of Rf-modules
» t
(*) 0 —» L@ K — R' 2 H —r . —> 0.

Since R', is flat over B', if M is in MP(B‘), then R' @M is in EP(R'f), 80
viewed as an Rf—mod.ule, we have R'fﬁ M is din M (R ) Thus (*) is an examct seguence 1
of exact functors from MP(B ) to M (R ). Applying Th. 2, Cor. 1, and using the isomor-
phism I, 2 R'y, we conclude that the functor from H (B') to gp(ﬁf) induces the
zero map on K-groups, as was to be shown. ;
Proof of the lemma. .Choosing for each prime in S8 a maximal ideal containing it, we j.""iT
can supposa S is a finite set of marimal idesls of R. Let .f')] be the module of Kahler
differentials of R over k. It is a projective R-module of rank r, and for R 1o be
smooth over B = k[z1 "'Ir-‘l] at the points of & means that the differentisls ’ dxie ﬂ1
are independent at the points of S. Let 'J be the intersection of the ideals in 5. As
R/I* = TT R/m" , me§, is finite dimensional over k, we can find a finite dimensional
k-subspace V of R such that for each m in S, there exists VireosVo in ¥ whose“
differentials form a hbaais for ..(21 at m vanishing at the other points of 5. We can
guppose alsc that V generates R &S an algebra over k. : )
Define an increasing filtration of R/tR by letting Fn(R/tR) be the subspace
spanned by the monomials of degree £ n in the elements of V. Then the asspciated
graded ring gr(R/tR) is of dimension r-1. To sea this, note that Proj({LF (R/tR)
is the closure in projective space of the subscheme Spec (R/tR) of the affine space
Spec S(V). Since R/tR has dimension -1, the part of this Pruj at infinity, namely
Proj(gr(R/tR}), 4is of dimension r2, so gr(R/tR) has dimension r-i1 as asserted.

Let zl....z

=1 be a system of parameters for gr(R/tR) such that each N is 7
homogeneous of degree 3 2. Then gr(R/tR) 4is finite over k[z1,..,z 1], 80 if the |
of R, then R/tR is finite over k[:{,..,x' 1]
1 in V sguch that x, = ::3'. + vj,..'
igi<r, have independent differentials at the points of S, whence condition i) of
lenna is satisfied. On the other hand, the X, have the leading terms 2, in sr(R/tﬂ
so R/tR 4is finite over k[x“..,xr_i]. The proof of the lemma and Theorem 5.11 1if

now complete,

are lifted to elements xj'_

By the choice of V¥, we can choose VirenrV



Theorem 5.13., The conditions of 5.6 hold for Spec A when A is the ring of

formal power series kEX1...,xn]] over a field k, and when A is the ring of convergent
powsr geries in X.',..,xn with coefficients in a field complete with respect to a

aon-trivial valustion;
#

The proof is anslogous to the preceding. Indeed, given O # t € A& = lc[[]f.1 ,,.xn]] ,
then after a change of coordinates, A/tA Dbecomes finite over B = k[[x1...,xzh4]] by the
Weierstrass preparation theorem. Further, if we put A' = A EBA/tA, then Ker{A' —» 4/t4)
is primcipal, so arguing as before, we can conclude that ﬂp(A/tA) - _l_ﬁp(&) induces zero
o EK-groupe, The argument slso works for convergent power meries, since the preparaiion
theorenm ies still available,

We now wa.nt to give an application of 5.11 to the Chow ring. We will assume known
the fact that the K1A defined here is canonicallylisamorphic to the Bass K1 , and in
particular that K.‘A is canonically isomorphic to the group of units A, vhen A iz &
local ring or a Euclideen domain.

Proposition 5.14. let X Dbe a regular scheme of finite _over a field. Then the
image of _ ‘
' :i1 H 1 I K k(x) —— ! | ¥ k(x = I ‘

it}
in the spectral sequence 5, 5 is the subgroup of codimension P cycles which are

x€X zex xex

» linearly eguivalent to zero. Consequently EP' (X) is cancnically isomorphic to the

gToup AP(X) of cycles of codimension p modulo linear eguivelence,

Proof. Let P1 be the projective line over the ground field -and let t denote the
cancnical rational function on P1. Let CP(X) denote the group- of codimension p
cycles. The subgroup of cycles linearly egquivalent to zero is generated by cycles of the
form Wo - Wm, where ¥ is an irreduc~ible subvariety of X x P1 of codimension p such
that the intersections ¥ = ¥A(X x 0) and LI Vn(X x @) are proper. We need &
known formula for Wo - wm " which we now recell,

Let Y be the image of W under the projection Ix ?1 — X, 80 that dim(Y) =
dim(W) or d:i.m(W) -1 . In the latter case we have W=1Y x P1 and 'Wo - Wm = 0, 80
ve may assume dim(¥) = dim(Y), whence Y has codimension p~-1 in X. let ¥y be the
generic point of Y and w the generic point of W, so that k{w) is a finite extension
of k(y). Let t' be the non-zerc element of k(w) obtained by pulling t back to W,
and let x be & point of codimension one in Y, whence O is & local domein of

. =1,x
dimension one with quotient field Kk(y): Then the formula we want is

{(5.15) (multiplicity of x in Wo—Hm) = ord (Nomk( )/xly

where ord vz : ¥(y)' ~»2Z 4is the unigue homomorphism such that

ordy:(f) = 1sngth :/I‘g X

for féC_iY g1 f # 0. For a proof of 5.15 see [Chevalley, p. 2-1 2].
S
From 5.15 it is clear that the subgroup of cycles linearly equivalent to zero is
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Klk(y) = k(y)*, we see ¢ is a map from

the image of the homomorphiam

d :'_l_‘_k(y —— _Ll_ﬂx

yexp_1 ch

where if f£¢€k(y)*, then #(f) = J ord_(f):x and we put ord.yx =0 if x#‘m Since
EUP) w0 ERTR(R), so all that

i

cP(x)

remains to prove the proposition. is to show that g = ‘d1 .

Let d, have the components
(d1)y-x : k(y) =K1ic(y) —_ Kk(x)_—.

for y in X_, and x in XP . We want to show that (d1 )y'z = |:>:'d:"_x . Pix y in
XP_,I and let Y be its eclosure. The closed immersion ¥ —X carries gj(Y) to
(X) for all 3, hence it induces a map from the spectral sequence 5.5 for Y to

M.
=j+p=1
the one for X augmenting the filtration by p-1. Thus we get s commutative diagram

4 . .
E{"“T'P(x) — ERx) = cPn)
. I
key) = BTN — T -

which shows that d) =0 unless x is in Y. On the other hand, if x 4is of
codimension one in Y, then the flat map Spec(O )--9‘1'.' ind.ﬁces & map of spectral

sequences, 30 ws get & commutative diagram

: q
Rie(y) = 270 — ) = o)
I l l l multiplicity
f x
— -|O|-1 d.1 1'-1 - °
hel) = EPTHy ) — BTGy ) = 2 L
which shows that (d ) is the map d1 in the spectral sequence for QY _ Therefore;
=Y,
the equality (d1) = ordyx is a consequence of the following. i

Lemma 5,16. let A be an equ:.—chara.cterist:.c locel noetherian domain of dmension

one with quotient field F and resjdue field k, and let

-—*K{A—a-KlF—LKDk-—aKéA —+K0F—->0

be the exact sequence 3.3 asgociated to the closed set Spec ¥ of BSpec A. Then

Q
that ord(x) = length(a/xA) for x in 4, x £ 0.

Proof. Ve have isomorpnisms K1F =7 and K1A = A" psince A and F are local
rings. We wish to show o(x) = ord(x) for x in A, x£0. If x i3 in A", this
clear, as 9(x) = 0 since x 4s in the image of the map KA —> KA —>KF . TwsX
can suppose x is not a unit, By hypothesis 4 is an algebra over the prime subfiel
k, of k. If x were algebraic over k , it would be a undt in A. Thus x is not
algevreic, so we have a flat homomarphism k [t] — A sending the indeterminate ¢ t

X. By naturality of the exact sequence 3.3 f{for flat maps, we get e commitative dial




P

LK}{O —

E

| -1
—_— Ktko[t] — Kk [t ]

E

1
such that u{t) = x. The homomorphism v is induced by sending a ko-vector space V +to
the A-module '

Anko[t]v = Afxa nkov

and using devissage to identify the K-groups of the category of A-modules of finite
length with those of P(k). Thus with respect to the isomorphisms Kk =Kk=Z, v
is miltiplication by length(4/xA) = ord(z) . Therefore it suffices to show that in the
top row of the asbove dimgram, ome has 0 (t) = £ 1. But this is easily verified by
explicitly computing the top row, using the fact that KOR = & and K,lR =R' for s
Euclidean dowain, g.e.d.

Remark 5.17. In another paper, elong with the proof. of Theorem 1 of [Quillen 1],
I plan to justify the following description of the boundary mep 3 : KnF - Kn-1k for a
local noetherian domain A of dimension one with quotient field F and residue fieid
k. By the universsl property of the K-theory of e ring, such &8 map is defined by giving

for every finite dimensjonsl vectoer space ¥ over F =& homo'topy class of maps
(5.18) Blaut(V)) —> BQ(P(k))

compatible with direct sums., To do this consider the set of A-lattices in V, i.e.
finitely generated A-submodules L such thet F@.L =V. Let ¥{V) be the ordered set
of layers (LD,L1) such that L1/L° is killed by the maximsl ideal of 4, and put

G = aut(V), Then G acts.on X(V), so0 we can form & cofibred caiegory K(V)G over G

with fibre X(V)., One can show that X(V} is contrectible (it is essentially a

'building'), hence the functor X(V)G —+ G "is a homotopy equivalence. On the other hend
thers is a functor X(V)G — Q(z(k)) sending (LO,L1) to L‘l/Lo , hence we obtain the
desired map 5.1B.

It can be deduced from this deseription that the Lemma 5,16 is valid without the

equi-characteristic hypothesis.
Combining 5.8, 5.1%, and 5.14 we obtain the following.

Theorem 5.19. For a regular scheme X of finite type over & field, there is a
canonical isomorphism

’ HP(X,EP) = aP(x) .

For p=0 and 1 this smounts to the trivial formules H°(X,Z) = €°(X) and
B1(X'2i) = Pie(X). For p=2 this formula has been established by Spencer Bloch in
certain cases (see his paper in this procedings). '

One noteworthy feature mbout the formula 5.19 is that the left side is manifestly
contravariant in X, which suggesis that higher K-~theory will eventually provide the tool

for a theory of ‘the Chow ring for non-projective nonsingular varieties.
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§8. Projective fibre bundles

The main result of this section is tha computation of the X-groups of tha projective
tundle assoclated to a vector bundie over a scheme. It generalizes the theorem about
Grothendieck groups in [ﬁGA 6 VI] and may be considered a8 a-firat step toward a higher
K-theory for schemes (as opposed to the K'-theory developed in the preceding section),
The methed of proof differs from that of [SGA 6] in that 4% uses the existence of
canonical resolutions for sheaves on projective space which are regular in the sense of
LHumford. Lecture 14]. We also discuss two variants of this result proved by the same
method, The first concerns the 'projective line' over a (not necessarily commutative)
ring; it is one of the ingredients for a higher K generalization of the 'Fundamental
Theorem' of Bass to be presented in a later paper. The second is a formula relating
the K-groups of a Severi-Brauer scheme with those of the associated Azumaya algebra

and its powers, which was inspired by a caleulation of Roberts.

1. The canonical resolutlon of a regular sheaf on PE. Let § be a scheme
let E be a vector bundie of rank r over 'ﬁ

{not necessarily noetherian or separated),
S, and let X = PE = Proj(SE) be the asscciated projective bundle, where 3& is the
symmetric algebra of E over 25. Let gxﬁi) be the canonical line bundle on X and
f X35 the structural msp. We will use the term "X-module" %0 mean a quasi-coherent
sheaf of gx—modules, unless specified otherwise.

The following lemma summarizes some standard facis about the higher direct image

functors qu* we will need.

Lemma 3.1. &) For any X-module F, qu*(F) ig an S-module which is zero for

Q=T
b) For any X-module F and vector bupndle E' on S, cne has

R, (F} @B = RIUE(FOE') .

c) For any S-module N, one has

) 0 . q ?é Q, -1
R, (0, (n) B N) = S B 8 N a= 0
- T
(Sr-nE) QS/\ E QSN g= 11

where "~'" denotes the dusl vector bundle.
d) If F is an X-module of finite type (e.g. a vector bundle), and if 5 is

affins, then .F is a quotient of (gx(_1)ﬁn)k

for some n, k.

Parts a),c) result from the standard Cech calculations of the cohomology of projt
tive space [EGA ITI 2]. Part b) 13 obvious since locally E' is a direct sum of o
finitely many coples of Q0. For d), see [EGA II 2.7.10].
Following Mumford, we call an X-moduls F regular if R, (F(-q))} =0 for q>0;'£
where as usual, F(n) = gx(1)ﬁnﬂxF . For example, we have Qx(n) 8N is regular for
n>0 by c).



is surjective. The lemms follows by taking assoclated sheaves,

Lemma 1.2. ot O - F' —» F = P" = 0 bp an exact seguence of X-podules.
a) If ™ (n) a.nd F*(n) mre regular, so is F(n).

b)_If fld n)_and_F_(nH )—are_reggam—‘ae—:l.—sml"" {n)=
e) If F(n+1)} and F" (n) are regular, and if f, {(F(n))~> T, (P*(n)) is onto, then

F'(n+t) 4is regular.

Proof. This follows immediately from the long exact seguence

R, (n-q)) —+ RYf, (F(n-q)) —> R, (F"(n-q)) —> Rq”&(#'(ﬂ-g)) — 25, (P(n~q)) .

. The following two lemmes appear in [Kumford. Lecture 14] end in [SGA & XILI 1.3J,
but the proof given here is slightly different.

Lemms 1,3, If F is regular, then Fn) ie reguiar for sll n20.

Proof. From the canonical epimorphism O BcE —}_E_)‘xh) one hes an epimorphism
(1.4) g (-1)ef ~—> o
Bo we get an exact sequence of vector bundles on X
‘ - .
(1.5) o--p-_gx(-r)es/\E ~= + o0 > Of-1)8E = 0 —0

by taking the exterior algebra of Qx("') 8.E with differential the interior product by
1.4. Tensoring with F we obtain an exact sequence

(1.6) 0 ~—a F(-r) aS/\’E — .. —F-1)8E —~=F —0.

Assuming F to be regular, then (F{-p} &s/\pE)(j:.) is seen to be regular using 1.t b),
Thus 4f 1.6 is split into short exact seguences

- P
0 —»Zp-—-i-F( p)ﬁs/\E — Zp_‘—-rO

we can use 1.2 b) to show by decreasing induction on p that Zp(p+1) is regular.

 Thus Z°(1) = F(1) 4ia regular, so the lemma follows by induction on n,

Lemms 1,7. If F is regular, then the ca.nog'.cai map Oy ﬂsf*(F)-q't-F ie_surjective.
Proof, From the preceding proof one has an exact seguence
0 wmp 2%, —> F(-1)8E —> F—r0

where Z (2) is regular. Thus R1i‘*(Z1(n)) =0 for nx1, 80 we find that the canomical
map I (F(n—d))ﬁs‘ﬂ —_— f (P(n)) 4is surjective for nx1. BHence the canonical map of
SE-modules

SE 88, (F) ~—» 1] £,(#(n))
120

Suppome now that F is an X-module which admits a resclution

where the T 4 are modules on S, Breaking this sequence up into short exact sequences
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and applying 1.2 b), one sees as in the proof of 1.3 +that F has to be regular.

Moreover, the above exact sequence can be viewed as a resclution of the zerc module by
acyclic objects for the & —funetor qu*(?(n)). where n is a.ny.fixed integer > 0. Thus -
on applying £, ﬁe get an exact sequence

0 = Sn-I‘+1E ﬂSTr-'I — . s SnE QSTO —_— f*(F(n)) — ()

for each n»0. In particular, we have exact sequences
(1.8) 0 = T = EgT , — ... — £,(Fn)) — 0

for n =0 ,.s., ™=t which can be used to show recursively that the modules 'Tn are
determined by F wup to canonical isomorphisnm.

Conversely, given a.n X-module P, we inductively define a sequence of X-modules
Zn = Zn(F) and a sequence of S-modules T = Tn(F) as follows. Starting with Z_1 = F,
let T = f*( (n)), and let Z_ De the kemel of the canonical map gx(—n)ﬂs‘!n-—) 7
It is clear that Z end T are additive functors of F. g

Supposing now that F is regular, we show by induction that 2 (n+1) is reéular, .\
this being clear for n = -1, We have an exact sequence

) c
(1.9) 0 —= 2 (a) —» 0,80 — & .(n) — 0

where the canonical map ¢ is surjective py 1.7 and the induction hypothesis. By 1.3;'
1.2 ¢) we find that Zn(n+1) is regular, so the induction works. In addition we have
(1.10) £,z (n)) = 0 for 230

because ¢ induces an isomorphism after applying f, .

from 1.9 and the fact that £, is exact on the category of regular X-medules,
one concludes hy induction that F ]-->-T F) ie an exact functor from regular .X-module
to S-modulses.

We next show that 2'1~.1 = 0. Trom 1.9 we get exact sequences
q=1 & ‘ .
R (2, () — Bz, (0)) — R0 (-q)asrm)
which allow one to prove by induction on gq , 'starting frem 1,10, that Rq'r (n))
for gq,nz0Q. This shows that Zr—1 (r-1) is regular, since Rq'_f* is zero for u_>~ T

1.10 and 1.7 we have Zr_1(r—1) =0, 80 Z_, =0 as was to be shown.
Combining the exact sequences 1.9 we obtain a canonical resclution of the reg

sheaf F of length r - 1, Thus we have proved the following.

Proposition 1.11. Any regular X-module F has a resolution of the form

(F) = F o O

0 ~—» gx(—m)nSTH(F) — . == ORT

where the T i(F) gre S-modules determined up to unique iscmorphism by F. Moreover
R i

FieT i(F) is an exact functor from the category of regular X-modules to the catﬂ-

of GSe-aodules,

Tha next three lémm.a_a are concerned with the sjituntion when F is a wector U
on X. :




Lemma 1.12. Assume S is quasi-compact. Then for amy vector bundle F on X,
w_inm n, such thet for all S—:m_gd_uj.gg_ N and nzn, , one has
a) qu' (F(n)ﬁ.ﬂ) =0 for q»0 :
Fre - p)—g (F(n))esu--—--*r (P(n)eg)
¢) £,(F(n)) is a vector bundle on 8.

_'_"—W

Proof, Because S is the union of finitely many open affines, it suffices to prove
the Jemms when 5 is affine, In thie case F is the quotient_ of L= gx(—n)k for mome
n and k by i.1 d). Thue for any vector bundle F on 5, there is an exact pequence
of vector bundles
e N e S Al e
such that the lemms is true for L by 1.1. Since
B )
7 | 0 - F (n)ﬂsN — L{n}g N --)-F(n)QSN — 0
A" is exact, we have an exact sequence
1
Y, (Ln)eg¥) —> R, (F(n)EQ) - Rz, (F'{n)eN)
. a0 part a) cen be proved by decreasing induction on g, as in the proof of Serre's
theorem fEGA 111 2.2.1]. Using a) we have a diagram with exact rows
£,(F'(n))ed —> £,(L(n))8R — £, (F(n))8N —> O
ut lS u
0 —> £ (Fa)aN) — £, (Ln)aH) —» £ (F(n)e}) —= O

3

for nZ> some I.]o and all N. Hence u is surjective; applying this to the vector
'pundle F', we see that u' is surjective, hence u is bijective for =n > some R,
and g11 K, whence b), By &), f {F(n)ﬁsN) is exsect as a functor of N for sufficient~
1y large n, whence using b) we sse £, (F(n)} is a flat Og-module. On the other hand,
f,(F(n)) is a quotient of £, (L{n)} for n » some D, 80 :[‘ F(n)) is of finite type.

Applying this to F' we see that f, (F(n)) 4s of finite presentation for all sufficiently
large bn. But a flat module of finite presentation is a vector bundle, whence c),

: 0 Lemma 1,13. If F is & vector bundle on X such thet qu*(F(n)) = 0 for gq20,
iy n >0, then f*(F(n)) is a vector bundle on S5 for all =n3}O.

Proof. The assertion being local on S, one can suppose S affine, whence f,(F(n))
is a vector bundle on S5 for large n by 1.12 ¢). Consider the exact Beguence

0 — F(n) F(n+1)ﬁsEv-—->-. . o — F(n+r)ﬂs/\rE'——p- 0

obtained by temsoring F(n) with the dusl of the seguence 1.5. For n20, this is &
~resolution of the zero module by acyclic modules for the d -functor qu‘* » hence one
knows that on applying f, one gets an exsct sequence

0 — £,(Fln}) — ... — £,(Fln+r))eNE —> O .

Therefore one can show f,(F(n)) is a vector bundle for all n»0 by decreasing

induction on m.
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Lomma 1, 14, If F iz a re;t_llar vector bundla on X, then T (F) is a vector
bundle on S8 for each L. :

This follows by induction cn i, using the 'exact sequences 1.8 and the lemma 1.13,

LY

2, The projective bundle theorem. Recell that the K-groups of a scheme are
naturally modules over I{o w 53 (1). The following result generalizes [SGA 6 VI 1.1].

Theorem 2.1. Let E Dbe a vector bundle of rank r over a scheme 3 and X =

Proj(SE) the sasociated projective scheme. If S5 is guasi-compact, then one has

isomorphisms :r: i
(qu)- 22 qu y (=

i *
iJogicr P ror fra,

where z§ KOI is the class of the canonical line bundle gx(-1-) and £ : X <35 is th
strustural map, ”

Proof. Let gn dencte the full aubcategory of E(X) congisting of vector bundle
F such that Rq'f*(F(k}) =0 for g#0 and k>n. Let R~ denote the full subcatego
of g(x) consisting of F such that F(n) is regular. BEach of these subcategories is
closed under extensions, ao its K-groups are defined.

Lemma 2,2, For all n, one has isomorphisms: i{q(gn) = xq(gn) ~= Kq(f(x))
induced by the inclusions R, C P C P(K)

To prove the lemma, we consider the exact{ sequence

(2.3) 0—>F —F1)gE —> ... --—->-F(r)ﬂs/\rE —_—0 .

PREY ATy

;, For each p>0, F y>r F(p)ﬂs/\PE is an exact functor from P to P , , hence it
:‘} induces a ho;nomorphism w ot K(B) =>X (P ). From Th. 2, Cor. 3 it is clear that
E h 2N >O(-1 )P'u_ is an inverse to the map induced by the inclusion of E . in B .
," Thus we have X (P ) &K (P ) for all =n. By 1.12a), PB(X) is tha union of the 3
F% P, 800y §2 (3) we have KX LP )= K, (P(X)) for ell n. The proof that K (B, )-
i :

q(P(X)) is similar, whence the lama.

o3

i\ _ - ) .
: Put Un(H)-Qx( n}@ N for N in P(5). For ogn<r, U, 1is an exact functo

‘ "
4 ;
2 from E(S) to P by 1. ¢), hence it induces a homomorphism u s Kq(P(S)) - K. .
i‘ In view of 2.2, it suffices for the proof of the thecrem to show that the hcmrmorp
e =1 ;

i kBT = k(2) . (adogner P %un(an)

is an isomorphiam.
_ From 1.13 we mow that V (F) = £,(F(n)) is an exact fumctor from P to
for n»0, hence we have & homomorphism

v Kq(go) - Kq(g(s)) ' T (vn(z))O(n‘(r '
where Yo is induced by Vn. Since
| anm(N) = f*(gx(“‘“) eSN )‘. = Sn—m(E) ﬂ':3N
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vy 1.1 ¢}, it follows thet the composition wu is describéd by a triengular matrix with
opes on the diagonal, Therefore +vu is mgn isomorphism, 8o u is injective.

. On_the_other hend, T  is an exact functor from R, -to P(S) by t.11._and. .1.14, ... 38

hence we have a homomorphism

P X (R) — K (P )F y X > ((-1)ntn(z))05n<r

where tn is induced by Tn' Apply:.ng Th, 2, Cor. 3 to the eract sequence 1.11, we
see that the composition wut is the map Kq(l}_o)—-t-l{q(l_’o) induced by the inclusion of
Eo in go . By 2.2, ut is an isomorphism, soc u ie surjective, concluding the proof.

The projective line over a ring. Let 4 be & (not necessarily commutative) ring

let t be an indeterminate, snd let
i i

Aft] — aft, 7] —2— 4f[t7"]
denote the canonicel homomorphisms. When A is commutative, a quasi-coherent sheaf on
P = Proj(a[x ,X,]) nay be identified witn a triple F = (N',N,8), hers ¥'e Mod(aft]),
M € Mod(alt™ 1] end 8 : "(M 2( ") 4is an isomorphism of Aft,t” ]—modu.lea. Fol-
lowing [Bass XII §9J we define Mod(P1) for A non-commutative to be the abelian
category of such triples, and we defme the cafegory of vector bundles on P}L + denoted

E(Pl), to be the full subcategory comsimting of triples with M'¢ P(aft]), ¥ ¢ g(A[t"‘]).

Theorem 3.1, Let h P{A) — P(P ) ‘be the exact functor sending P to the
tripls consisting of P[_t] = A[t]ﬂ P, P[‘c 1] and muliiplication by £ on P[t,t-1_].
Then one has isomorphisms

(kA% =2 K (2(E) . (xy) b (n)(x) + (8),()

gnd the relastions

(3.2) (n)y - 2(h )y + (B o)

for all n.

¥Yhen A is commutative, this follows from 2.1, once one notices thet h (P) is the
module 0 (n)ﬁsP + For the non-commutative case, one modifies the proef of 2 1 ina
straightforward way. For exemple, if F = (0" 9). we put PF(n) = (w M 't B5), and let
XO,K1 :'P(n-1)—g.F(n) be the homomorphisme given by X = 1 on M and t “lon ¥ .
11 =t on X and 1 on M7). Then we have an exact seguence

l'-x ) Y-opr

+ J{‘lpr2
O i F(0-2) mametee® s P{ne)?

1

b F{n) == 0

corresponding to 1.6, which leads to the relations 3,2, Also using the fact that qu*
can be computed by means to the standard open affine covering of P1, we can define
Rq‘f*(F) in the non-commutative case to be the homology of the complex concentrated in
S alzy) = e{1ex) - 18y .
One therefore has available all of the {tools used in the proof of 2.1 in the non-commu-

tative case; the rest ie stralghiforward checking which will be omitted.

degrees O , 1 given by themap - d : M’ x M —» i
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4. Severi-Brauer schemes ang Azumaya 3152252_. Let 5 be a scheme and let X de
a Severi-Breuer scheme over S of relative dimension r-1. By definition X is an
S—schame locally isomofphic to the projective space P;-1 for the etale topology on 3.

(see LGrothendieckJ}, and it is gssentially the same thing as an Azumsya algebra of rank
2 over S5, We propose nov to generalize 2.1 +o this situation,

When there exists a line tundle L on X which restricts to 0(~1) on each
gaometric fibre, one has X = PE, where E is the vector bhundle f*ﬂv om S5, f:X =58
being the structural map of X. In éeneral such a line bundle L exists only locally for
the etale topology on X. However, we shall now show that there is a canonical vector
bundle of rank r on X which restricts to O(-i)r on sach 5eometric fibre.

Let the group scheme GL r,8 act on 2; ir the standard way, and put Y = PS =
Proj(S(O )). The induced actlon on Y factors through the projective group
PGLr'S = GLr'S/Gm,S + Since G g acts trivially on the vector bundle O (-1)asgg, i
fthe group PGL:,S operates on this vector bundle compatibly with its action on Y. A4s k
X ia locally isomorphic to Y for the etale topology on S and PGL:,S is the group
of automorphisms of Y over 3, one knows that X i= the bundle over § with fibre Y
associated to a torsor T under PGL 5 locally trivial for the etale topology. Thus {
by faithfully flat descent, the bundle 0 (-1)&§2g en I gives rise to a vector
bundle J on X of rank r,

It is clear that the construction of J 4is compatible with base change, and that

( 1)ESE if X = PE. In the general case there is a cartesian square

i -—-—§i-—; X

‘| E

§' —E o’ s

where g is faithfully flat (e.g. an etale surjective map aver which T becomes triviaﬁ
such that X' = PE for some vector bundle E of rank r on 3', and further

") = g, (-1)eE.
Let A be the sheaf of (non~commutative) QOg-algebras given by
4 = f£,(End, ())°P

where 'op' denotes the opposed ring structure, As g is flat, we have g*f, = g’

Hence we have
e (W) = £, (ma (0, (-1)ag,E)) = £,(0 .8 Ena  (B)) = End ,(B),
hence A is an Azumaya algebra of rank r2 over 5. Moreover one has
| f*A = End (7)°P
a3 one verifies by pulling back to X',

Let J (resp. A ) be tha nefold tanaor product of J on X (resp. 4 on
that A la an Azumaya algebra of rank (r° ) such that
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= op : ap
a, = £,(Ea (G )) , &4 ) = End(5)
et p(An) denote the category of vector bundles on 5 vwhich are left modules for An .

we have an exact functor

-

i 8, 7 p(a) — B(X) Mo J @ re(n) .

n ' (4 )

and hence an induced mep of K~-groups.

Theorem 4,1, If S5 is guasi-compact, one has isomorchisms
-1

-1
LTIt = wm o ) b 2 G, 20
n=0

This is actuzlly a generalization of 2.1 Dbecause if two Azumaya elgebras 4 , B
represent the same element of the Brauer group of S, then the categories E(A), g(B) are
equivelent, and hence'have isomorphic K-groups. Thus Ki(z(An)) = Ki(S) for all n if
X is the projective bundle associsted to some vector pundle.

The proof of 4.1 is & modification of the proof of 2.1. One defines an X-module
F 1o be regular if its inverse image on X' = PE is regular, For a regular F one

construcis a seguence

(42) 0 —J &8 T (F) — ... —> Q81 (F) —> F — O

recursively by

T (P} = f*(ig_h(Jn,Zn_1(F))) : Zn(F) = Xer [JnGA Tn(F) — 2, (F)}

starting with Z“}(F) = F. It is easy tc see this sequence when l1ifted to X' coincides
the the canonical resolution 1.11 for the inverse image of F on X', 3ince X' is
faithfully flat over X, 4.2 is g resolution of F,

We note also that there is a canonical epimorphism J-a#-gx obteined by descending
1.4, and hence a cunonical vector bundle exact sequence

0w AT — .. — 7 — 0 —> 0

on X corresponding io 1.5. Therefore it should be clear that all of the tools used in
the proof of 2.1 are available in the situstion under consideration; the rest of the
proof of 4,1 will be left to the reader.

Example: Let X be a complete non-singular curve of genus zero over the field
k = H°(x,gx) , and suppoese X has no rationel point. Then X is a Severi-Brauer scheme
over k of relative dimension one, and J is the unique indecomposable vector bundle of

rank 2 over X with degree ~2, The above theorem says:

——

K, (x} = Ki(k) @x,(4)

where A is the skew-field of endomorphisms of J. This formula in low dimensions has
been proved by Leslie Roberts ( [Roberts] V.
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